Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1233-1243     CSTR: 32134.14.1005.4537.2024.412      DOI: 10.11902/1005.4537.2024.412
  研究报告 本期目录 | 过刊浏览 |
大气等离子热障涂层体系在900 ℃含水蒸气和NaCl环境下的腐蚀行为
李琰琰1, 李帅2(), 董超1, 李冬强1, 鲍泽斌2, 朱圣龙2
1 中国航发沈阳发动机研究所 先进船舶发动机技术全国重点实验室 沈阳 110015
2 中国科学院金属研究所 师昌绪先进材料创新研究中心 沈阳 110016
Corrosion Behavior of Atmospheric Plasma Spray Thermal Barrier Coatings at 900 °C Beneath NaCl Deposits in Oxygen Flow Carrying Water Vapor
LI Yanyan1, LI Shuai2(), DONG Chao1, LI Dongqiang1, BAO Zebin2, ZHU Shenglong2
1 National Key Laboratory of Marine Engine Science and Technology, AECC Shenyang Engine Research Institute, Shenyang 110015, China
2 Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

李琰琰, 李帅, 董超, 李冬强, 鲍泽斌, 朱圣龙. 大气等离子热障涂层体系在900 ℃含水蒸气和NaCl环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1233-1243.
Yanyan LI, Shuai LI, Chao DONG, Dongqiang LI, Zebin BAO, Shenglong ZHU. Corrosion Behavior of Atmospheric Plasma Spray Thermal Barrier Coatings at 900 °C Beneath NaCl Deposits in Oxygen Flow Carrying Water Vapor[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1233-1243.

全文: PDF(11349 KB)   HTML
摘要: 

分别采用两种型号的大气等离子喷涂(APS)工艺在超音速火焰喷涂(HVOF)制备的NiCoCrAlY涂层表面制备8%Y2O3稳定的ZrO2 (YSZ)陶瓷面层,然后在900 ℃含水蒸气和NaCl环境下进行腐蚀测试,研究两种工艺制备的热障涂层(TBC)体系的腐蚀行为。研究结果表明:APS工艺可通过调整合适的主、辅气流量及喷涂电流改善YSZ陶瓷面层的结构,使其均匀致密、孔隙率更低。致密的YSZ陶瓷面层可一定程度上阻碍Cl和O的侵入,延缓NiCoCrAlY粘结层的氧化速率,从而使该TBC体系表现出更优异的热稳定性和耐海洋腐蚀性能。

关键词 材料表面与界面高温腐蚀热障涂层模拟海洋环境    
Abstract

Ceramic top coatings of 8%Y2O3-stabilized ZrO2 (YSZ) were deposited on the surface of NiCoCrAlY bond coat on DZ411 Ni-based high temperature alloy via high-velocity oxygen fuel (HVOF) spraying with tow type of spraying processes, namely Metco 9M and Praxair 7700 spraying techniques, respectively. The corrosion behavior of the two YSZ thermal barrier coatings was evaluated beneath NaCl deposits in oxygen flow carrying water vapor at 900 ℃. As indicated by the results, the air plasma spraying process can optimize the microstructure of the YSZ ceramic top coat through a judicious adjustment of the plasma gas flow rate and spraying current, resulting in a uniformly dense and less porous structure. Due to its dense microstructure and low porosity, the compact YSZ ceramic top coat is capable of hindering the inward migration of chlorine and oxygen to a certain extent, thereby suppressing the oxidation rate of the NiCoCrAlY bond coating. It follows that, the YSZ thermal barrier coating prepared by the Praxair 7700 spraying process exhibited excellent thermal stability and corrosion resistance.

Key wordssurface and interface in materials    high temperature corrosion    thermal barrier coatings    simulated marine environment
收稿日期: 2024-12-26      32134.14.1005.4537.2024.412
ZTFLH:  TG174.2  
基金资助:国家自然科学基金(52301116);中国博士后科学基金(2023M743572);先进船舶发动机技术全国重点实验室基金
通讯作者: 李帅,E-mail:sli17s@imr.ac.cn,研究方向为高性能高温防护热障涂层体系设计
Corresponding author: LI Shuai, E-mail: sli17s@imr.ac.cn
作者简介: 李琰琰,女,1998年生,博士,工程师
ElementCoCrAlTaTiYWMoCBNi
DZ4119.1413.62.972.874.90-3.441.600.090.01Bal
NiCoCrAlY23208.54-0.5----Bal
表1  DZ411镍基高温合金和NiCoCrAlY粉末的名义化学成分
图1  高温腐蚀测试设备结构示意图
图2  Metco 9M和Praxair 7700制备YSZ陶瓷面层的初始表面微观形貌
图3  YSZ陶瓷层分别由Metco 9M和Praxair 7700沉积的TBCs的截面微观形貌
图4  Metco 9M和Praxair 7700制备YSZ陶瓷面层的XRD图谱
图5  Metco 9M和Praxair 7700制备YSZ陶瓷面层在900 ℃水蒸气协同NaCl环境下腐蚀100 和200 h后的XRD图谱
图6  Metco 9M喷涂制备YSZ热障涂层体系腐蚀100 和200 h后的微观截面形貌
图7  Praxair 7700喷涂制备YSZ热障涂层体系腐蚀100和200 h后的微观截面形貌
图8  Metco 9M喷涂制备YSZ热障涂层体系腐蚀300 h后的微观截面形貌和(b)的EDS原始面分布图
ZoneOAlCrCoNiTiYTaCl
1#65.834.00.1-----0.1
2#67.629.20.7---2.4-0.1
3#66.424.71.10.71.16.0---
4#-5.614.316.348.85.2-9.8-
5#-2.927.224.841.91.00.41.8-
6#67.032.00.30.20.3---0.2
7#73.58.510.94.82.3----
8#-17.522.220.835.7--3.8-
9#-12.028.625.133.6--0.7-
表2  图8和9中标记区域的EDS结果
图9  Praxair 7700喷涂制备YSZ热障涂层体系腐蚀300 h后的微观截面形貌和EDS元素面扫描图
[1] Hamed A, Tabakoff W C, Wenglarz R V. Erosion and deposition in turbomachinery [J]. J. Propul. Power, 2006, 22: 350
[2] Wang W Q, Cui Y, Xue Y P, et al. Corrosion behavior of GH4169 alloy under flexural tensile stress and beneath a NaCl deposit film in water vapor containing air at 600 ℃ [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1399
[2] 王文泉, 崔 宇, 薛蕴鹏 等. 潮湿空气中应力耦合固态NaCl作用下GH4169合金的中温腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1399
doi: 10.11902/1005.4537.2024.002
[3] Lyu X M, Wang Z Y, Han E-H. Preparation and corrosion resistance of nano-ZrO2 modified epoxy thermal insulation coatings [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1234
[3] 吕晓明, 王震宇, 韩恩厚. 纳米改性环氧隔热涂层的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1234
doi: 10.11902/1005.4537.2023.340
[4] Feng S Y, Zhou Z H, Yang L L, et al. Electrochemical and wear behavior of TC4 alloy in marine environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1243
[4] 冯少宇, 周兆辉, 杨兰兰 等. 海洋环境下TC4合金的电化学及磨损行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1243
doi: 10.11902/1005.4537.2023.390
[5] Liu Y B, Liu J H, Yu Y H, et al. Review of hot corrosion of thermal barrier coatings of gas turbine [J]. Chin. J. Ship Res., 2017, 12(2): 107
[5] 刘永葆, 刘建华, 余又红 等. 燃气轮机热障涂层高温腐蚀研究综述 [J]. 中国舰船研究, 2017, 12(2): 107
[6] Chen Z, Jin G, Cui X F, et al. Research progress on marine adaptability of ceramic based materials for thermal barrier coating of marine gas turbine [J]. Aeronaut. Manuf. Technol., 2021, 64(13): 45
[6] 陈 卓, 金 国, 崔秀芳 等. 耐海洋环境腐蚀燃机热障涂层材料研究进展 [J]. 航空制造技术, 2021, 64(13): 45
[7] Wang K, Zou L X, Guo L, et al. High-temperature corrosion and protection of thermal barrier coatings for aeroengines and gas turbines [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1
[7] 王 昆, 邹兰欣, 郭 磊 等. 航空发动机及燃气轮机热障涂层高温腐蚀与防护 [J]. 中国腐蚀与防护学报, 2025, 45: 1
[8] Loganathan A, Gandhi A S. Effect of phase transformations on the fracture toughness of t′ yttria stabilized zirconia [J]. Mater. Sci. Eng., 2012, 556A: 927
[9] Zhang H, Liu X Z, Huang A H, et al. Manufacturing and research progress in metallic bond coats for thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 20
[9] 张 晗, 刘轩溱, 黄爱辉 等. 热障涂层金属粘结层制备与研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 20
[10] Yang H B, Wang Y S, Wang X, et al. Research progress of hot corrosion and protection technology of gas turbine under marine environment [J]. Surf. Technol., 2020, 49(1): 163
[10] 杨宏波, 王源升, 王 轩 等. 燃气轮机在海洋环境下的热腐蚀与防护技术研究进展 [J]. 表面技术, 2020, 49(1): 163
[11] Yu C T, Liu H, Jiang C Y, et al. Modification of NiCoCrAlY with Pt: Part II. Application in TBC with pure metastable tetragonal (t′) phase YSZ and thermal cycling behavior [J]. J. Mater. Sci. Technol., 2019, 35: 350
doi: 10.1016/j.jmst.2018.09.040
[12] Qu W W, Chen Z H, Li S S, et al. Failure mechanism of YSZ coatings prepared by EB-PVD under partial penetration of CMAS attacking [J]. Corros. Sci., 2022, 203: 110339
[13] Li W Q, Zhou H X, Su H R, et al. Progress of research on CMAS corrosion resistance of thermal barrier coatings [J]. Mater. Rep., 2023, 37(): 23080141
[13] 李文权, 周红霞, 苏浩然 等. 热障涂层的抗CMAS腐蚀研究进展 [J]. 材料导报, 2023, 37(): 23080141
[14] Shan X, Chen W F, Yang L X, et al. Pore filling behavior of air plasma spray thermal barrier coatings under CMAS attack [J]. Corros. Sci., 2020, 167: 108478
[15] Li Y Y, Huang D, Zhang C Y, et al. High-temperature corrosion behaviour of Pt-modified aluminide coating with solid NaCl deposit in O2 + 10vol.%H2O and the influence of pre-oxidation treatment [J]. Corros. Sci., 2022, 204: 110421
[16] Zeng B, Wang J, Fan H Y, et al. Effect of central gas velocity and plasma power on the spheroidizing copper powders of radio frequency plasma [J]. Vacuum, 2020, 174: 109195
[17] Jiang P, Yang L Y, Li D J, et al. Residual stress in air-plasma-sprayed thermal barrier coatings under long-term high-temperature oxidation [J]. Surf. Coat. Technol., 2024, 484: 130827
[18] Li Q, Hu J, Xie J L, et al. Influence of high-enthalpy atmospheric plasma spraying process parameters on microwave dielectric properties of Y2O3 coatings [J]. J. Therm. Spray. Technol., 2021, 30: 898
[19] Huang D, Niu Y S, Li S, et al. Thermal cycling and flame thermal shocking failure mechanism of tetragonal Yttria-stabilized zirconia TBCs prepared on high temperature alloys by suspension plasma spraying [J]. Chin. J. Mater. Res., 2024, 38: 691
doi: 10.11901/1005.3093.2023.471
[19] 黄 迪, 牛云松, 李 帅 等. 四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理 [J]. 材料研究学报, 2024, 38: 691
[20] Ibégazène H, Alpérine S, Diot C. Yttria-stabilized hafnia-zirconia thermal barrier coatings: the influence of hafnia addition on TBC structure and high-temperature behaviour [J]. J. Mater. Sci., 1995, 30: 938
[21] Zhao K R, Huang W Z, Deng P H, et al. Mechanical properties, thermal shock resistance and stress evolution of plasma-sprayed 56wt%Y2O3-stabilized ZrO2 thick thermal barrier coatings [J]. Surf. Coat. Technol., 2024, 494: 131352
[22] Thakur M, Vij A, Kumar A, et al. Structural and optical studies of annealed zirconia nanocrystals: Phase transformations, defect dynamics, and magnetic behaviour [J]. Ceram. Int., 2024, 50: 50680
[23] Tillmann W, Khalil O, Baumann I. Influence of spray gun parameters on inflight particle's characteristics, the splat-type distribution, and microstructure of plasma-sprayed YSZ coatings [J]. Surf. Coat. Technol., 2021, 406: 126705
[24] Wang N, Wang Q S, Wang F C. Process optimization of ZrO2 thermal barrier coating by plasma spraying [J]. China Surf. Eng., 2004, 17(3): 13
[24] 王 娜, 王全胜, 王富耻. 等离子喷涂ZrO2热障涂层工艺参数优化设计 [J]. 中国表面工程, 2004, 17(3): 13
[25] Li J F, Liao H L, Ding C X, et al. Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments [J]. J. Mater. Process. Technol., 2005, 160: 34
[26] Mutter M, Mauer G, uer RM, et al. Systematic investigation on the influence of spray parameters on the mechanical properties of atmospheric plasma-sprayed YSZ coatings [J]. J. Therm. Spray Technol., 2018, 27: 566
[27] Lu G M, Wurikaixi A. Process parameter optimization of plasma sprayed TiO2-based coatings [J]. Surf. Technol., 2018, 47(4): 73
[27] 路广明, 乌日开西·艾依提. 等离子喷涂TiO2基涂层工艺参数优化研究 [J]. 表面技术, 2018, 47(4): 73
[28] Yan K K, Huang C, Wang W D, et al. Phase structure and surface morphology of Y2O3 coating prepared by air plasma spraying [J]. Heat Treat. Met., 2013, 38(12): 5
[28] 闫坤坤, 黄 春, 王文东 等. 大气等离子喷涂氧化钇涂层的相结构及表面形貌 [J]. 金属热处理, 2013, 38(12): 5
[29] Zhang Y, Guo L L, Ju L Y, et al. Flow field characteristics and particle flow characteristics of atmospheric plasma spraying [J]. Powder Metall. Ind., 2022, 32(5): 12
[29] 张 勇, 郭龙龙, 鞠录岩 等. 大气等离子喷涂流场特性及颗粒流动特性 [J]. 粉末冶金工业, 2022, 32(5): 12
[30] Gao F, Huang X, Liu R, et al. Optimization of plasma spray process using statistical methods [J]. J. Therm. Spray Technol., 2012, 21(1): 176
[31] Liu M J, Li G R, Yang G J, et al. Plasma spray-physical vapor deposition (PS-PVD) and non-contact detection method of plasma jet [J]. Surf. Technol., 2020, 49(1): 1
[31] 刘梅军, 李广荣, 杨冠军 等. 等离子-物理气相沉积(PS-PVD)及其射流非接触检测方法 [J]. 表面技术, 2020, 49(1): 1
[32] Zhang L, Luo X F, Lin R S, et al. Effect of preparation process of Al2O3 overlay on corrosion resistance of YSZ coating in NaCl-KCl molten salt [J]. At. Energy Sci. Technol., 2023, 57: 920
[32] 张 磊, 罗晓芳, 林如山 等. Al2O3覆盖层制备工艺对YSZ涂层耐熔盐腐蚀性能的影响 [J]. 原子能科学技术, 2023, 57: 920
[33] Batista C, Portinha A, Ribeiro R M, et al. Morphological and microstructural characterization of laser-glazed plasma-sprayed thermal barrier coatings [J]. Surf. Coat. Technol., 2006, 200: 2929
[34] Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28: 659
[35] Jiang S M, Peng X, Bao Z B, et al. Preparation and hot corrosion behaviour of a MCrAlY + AlSiY composite coating [J]. Corros. Sci., 2008, 50: 3213
[36] Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
[1] 耿浩钧, 谢芳坤, 杨凌旭, 王艳丽, 刘会军, 曾潮流. (La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7 高熵陶瓷的制备及其在熔融氧化物膜CaO-MgO-Al2O3-SiO2 下的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1244-1252.
[2] 沈晨, 黄锦阳, 张醒兴, 胡新元, 朱明, 鲁金涛. 金属材料的高温碳化腐蚀与防护研究现状[J]. 中国腐蚀与防护学报, 2025, 45(3): 589-601.
[3] 张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[4] 王昆, 邹兰欣, 郭磊, 闫凯, 叶福兴, 刘洪丽, 郭洪波. 航空发动机及燃气轮机热障涂层高温腐蚀与防护[J]. 中国腐蚀与防护学报, 2025, 45(1): 1-19.
[5] 占阜元, 刘宣义, 黄世福, 刘帅岐, 徐媛媛, 潘喜桂, 何华林, 刘光明. SA210C钢在涂覆不同质量比混合盐膜下的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[6] 张炬焕, 刘静, 彭晶晶, 张弦, 吴开明. Al-Zn-In系牺牲阳极在模拟海洋环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1223-1233.
[7] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[8] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[9] 宇波, 李彰, 周凯旋, 田浩亮, 房永超, 张晓敏, 金国. MoSi2 改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[10] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[11] 柳志浩, 刘光明, 何思凡, 董猛, 李玉, 李富天, 祝婷. F22母材与焊缝在模拟沿海空气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[12] 宋健, 周文晖, 王金龙, 孙文瑶, 陈明辉, 王福会. 不同Y2O3含量的YSZ块体材料在模拟海洋环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 359-364.
[13] 周文晖, 宋健, 陈泽浩, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 水热腐蚀老化对热障涂层的摩擦磨损性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 261-270.
[14] 王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强. 固体氧化物燃料电池金属连接体腐蚀研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
[15] 官宇, 刘光明, 张民强, 刘欢欢, 柳志浩, 龚兵兵. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.