Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 594-600     CSTR: 32134.14.1005.4537.2022.182      DOI: 10.11902/1005.4537.2022.182
  研究报告 本期目录 | 过刊浏览 |
F22母材与焊缝在模拟沿海空气中的高温腐蚀行为研究
柳志浩1, 刘光明1(), 何思凡2, 董猛2, 李玉1, 李富天1, 祝婷1
1.南昌航空大学材料科学与工程学院 南昌 330063
2.东方电气集团东方锅炉股份有限公司 自贡 643001
High Temperature Corrosion Behavior of F22 Base Metal and Weld in Simulated Coastal Atmosphere
LIU Zhihao1, LIU Guangming1(), HE Sifan2, DONG Meng2, LI Yu1, LI Futian1, ZHU Ting1
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.DEC Dongfang Boiler Group Co. Ltd., Zigong 643001, China
全文: PDF(5249 KB)   HTML
摘要: 

研究了F22母材与焊缝在510 ℃模拟沿海空气下的高温腐蚀行为,测量了母材与焊缝的腐蚀动力学曲线。采用X射线衍射 (XRD) 和扫描电子显微镜 (SEM) / 能谱仪 (EDS) 分析了母材与焊缝的腐蚀产物相组成及其表面和截面形貌。结果表明:F22母材与焊缝在腐蚀过程中均表现为增重,焊缝腐蚀速率略大于母材,腐蚀前250 h增重较快,250 h后动力学均符合抛物线规律。腐蚀产物分层,外层为Fe2O3,内层为Fe2O3与Fe3O4的混合物。由于Cr含量较低,没有生成保护性能良好的Cr2O3膜。

关键词 F22钢沿海空气高温腐蚀    
Abstract

The high temperature corrosion behavior of F22 base metal and weld at 510 ℃ in simulated coastal atmosphere was studied. The corrosion kinetic curves of base metal and weld was measured. The microstructure, chemical composition, phase constituent, surface and cross-sectional morphology of corrosion products were characterized by means of optical metallography, XRD and SEM/EDS. The results showed that both the weld and base metal of F22 steel showed mass gain during the corrosion process. The mass gain rate in the initial 250 h is faster than that in the subsequent corrosion process, while the corrosion rate of the weld is slightly greater than that of the base material. The kinetics followed parabolic law after 250 h corrosion. The corrosion product scale had a duplex microstructure, the outer layer was Fe2O3, and the inner layer was a mixture of Fe2O3, Fe3O4. Due to the low Cr content of the alloy, a protective Cr2O3 film did not form on the sample surface. The corrosion mechanism is briefly discussed too.

Key wordsF22 steel    coastal air    high temperature corrosion
收稿日期: 2022-06-05      32134.14.1005.4537.2022.182
ZTFLH:  TG172  
基金资助:国家自然科学基金(51961028)
通讯作者: 刘光明,E-mail:gemliu@126.com,研究方向为材料的腐蚀与防护
Corresponding author: LIU Guangming, E-mail: gemliu@126.com
作者简介: 柳志浩,男,1997年生,硕士生

引用本文:

柳志浩, 刘光明, 何思凡, 董猛, 李玉, 李富天, 祝婷. F22母材与焊缝在模拟沿海空气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
LIU Zhihao, LIU Guangming, HE Sifan, DONG Meng, LI Yu, LI Futian, ZHU Ting. High Temperature Corrosion Behavior of F22 Base Metal and Weld in Simulated Coastal Atmosphere. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 594-600.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.182      或      https://www.jcscp.org/CN/Y2023/V43/I3/594

图1  F22板材焊接实物图
MaterialCSiMnPSCrNiMoFe
Base Metal0.110.060.450.0040.0012.410.111.04Bal.
Weld0.080.250.690.0050.0022.400.161.02Bal.
表1  F22母材与焊缝化学成分表 (mass fraction / %)
图2  模拟沿海空气试验装置图
图3  F22母材与焊缝金相显微图片
图4  F22母材与焊缝在510 ℃模拟沿海空气中腐蚀3000 h的腐蚀动力学曲线与拟合曲线
图5  F22母材与焊缝在510 ℃模拟沿海空气中腐蚀3000 h的表面微观形貌与能谱图
图6  F22母材与焊缝在510 ℃模拟沿海空气中腐蚀3000 h的截面微观形貌与线扫描图
ZoneBase metalWeld
OCrFeOCrFe
159.663.0637.2859.383.0537.57
260.68-39.3260.83-39.17
364.42-35.5863.02-36.98
表2  F22母材和焊缝截面各区域元素含量
图7  F22母材与焊缝在510 ℃模拟沿海空气中腐蚀3000 h与剥离不同厚度氧化膜后的XRD谱
1 Liu H. Study on high temperature corrosion behavior of 316H steels of three manufacturers in simulated marine atmosphere [D]. Nanchang: Nanchang Hangkong University, 2019
1 刘 红. 三种316H在模拟沿海大气中的高温腐蚀行为研究 [D]. 南昌: 南昌航空大学, 2019
2 Tang Y B, Liu L, Li Y, et al. The electrochemical corrosion mechanisms of pure Cr with NaCl deposit in water vapor at 600 ℃ [J]. J. Electrochem. Soc., 2011, 158: C237
doi: 10.1149/1.3596167
3 Wang F, Shu Y. Influence of Cr content on the corrosion of Fe-Cr alloys: The synergistic effect of NaCl and water vapor [J]. Oxid. Met., 2003, 59: 201
doi: 10.1023/A:1023083309041
4 Liu H H, Zhou H Y, Yang X C, et al. SCC behavior of 304L stainless steel in high temperature and high pressure water vapor [J]. Surf. Technol., 2020, 49(12): 252
4 刘欢欢, 周慧云, 杨小川 等. 304L不锈钢在高温高压水蒸气中的应力腐蚀开裂行为 [J]. 表面技术, 2020, 49(12): 252
5 Li R T. Experimental study on steam oxidation of domestic nuclear Grade 2.25Cr1Mo steel and its welding consumables [D]. Beijing: North China Electric Power University, 2021
5 李瑞涛. 国产核级 2.25Cr1Mo钢及其配套焊材水蒸气氧化试验研究 [D]. 北京: 华北电力大学, 2021
6 Wang Z W, Kou L L, Lei Y. Analysis of oxide film characteristic of 10CrMo910 steels formed in high temperature and high pressure steam [J]. Eng. J. Wuhan Univ., 2010, 43: 658
6 王志武, 寇莉莉, 雷 燕. 10CrMo910钢在高温高压水蒸汽中形成的氧化膜的特征分析 [J]. 武汉大学学报 (工学版), 2010, 43: 658
7 Gao D Y, Qin J L, Shi S D, et al. Analysis on corrosion reasons of duplex stainless steel weld zone in oilfield production water [J]. Mater. Prot., 2020, 53(5): 140
7 高大义, 秦俊岭, 施书定 等. 油田生产水双相不锈钢焊缝区腐蚀原因分析 [J]. 材料保护, 2020, 53(5): 140
8 Yang C L, Xu W J, Tao X X, et al. Causes of welded corrosion and leakage of 304 stainless steel thin-wall container [J]. Corros. Prot., 2014, 35: 623
8 杨春丽, 许万剑, 陶新秀 等. 304不锈钢薄壁容器焊缝腐蚀泄漏原因 [J]. 腐蚀与防护, 2014, 35: 623
9 Zhang D Q, Liu G M, Zhao G Q, et al. Cyclic oxidation behavior of Fe-9Cr-1Mo steel in water vapor atmosphere [J]. J. Cent. South Univ. Technol., 2009, 16: 535
doi: 10.1007/s11771-009-0089-0
10 Zhu Z L, Xu H, Jiang D F, et al. Temperature dependence of oxidation behaviour of a ferritic-martensitic steel in supercritical water at 600-700 ℃ [J]. Oxid. Met., 2016, 86: 483
doi: 10.1007/s11085-016-9647-7
11 Zhu Z L, Khan H I, Cao Q, et al. Oxidation behavior of ferritic steel T22 exposed to supercritical water [J]. High Temp. Mater. Process., 2019, 38: 476
doi: 10.1515/htmp-2018-0100
12 Cao M, Liu L, Yu Z F, et al. Studies on the corrosion behavior of Fe-20Cr alloy in NaCl solution spray at 600 ℃ [J]. Corros. Sci., 2018, 133: 165
doi: 10.1016/j.corsci.2018.01.033
13 Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001
13 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001
14 Li T F. High Temperature Oxidation and Thermal Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003
14 李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003
15 Zhu R Z, He Y D, Qi H B. High Temperature Corrosion and High Temperature Corrosion Resistant Materials [M]. Shanghai: Shanghai Science and Technology Press, 1995
15 朱日彰, 何业东, 齐慧滨. 高温腐蚀及耐高温腐蚀材料 [M]. 上海: 上海科学技术出版社, 1995
16 Zhang P P, Yang Z M, Chen Y, et al. Corrosion behavior of Cr bearing weathering steel in simulated marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 93
16 张飘飘, 杨忠民, 陈 颖 等. 含铬耐候钢在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 93
doi: 10.11902/1005.4537.2016.013
17 Yi P. Study on high temperature corrosion and high temperature oxidation behavior of austenitic stainless steels [D]. Taiyuan: Taiyuan University of Technology, 2021
17 伊 璞. 奥氏体不锈钢的高温腐蚀和高温氧化行为研究 [D]. 太原: 太原理工大学, 2021
18 Galetz M C, Rammer B, Schütze M. Refractory metals and nickel in high temperature chlorine-containing environments-thermodynamic prediction of volatile corrosion products and surface reaction mechanisms: a review [J]. Mater. Corros., 2015, 66: 1206
19 Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
19 伊 璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288
20 Mendiratta M G, Parthasarathy T A, Dimiduk D M. Oxidation behavior of αMo-Mo3Si-Mo5SiB2 (T2) three phase system [J]. Intermetallics, 2002, 10: 225
doi: 10.1016/S0966-9795(01)00118-2
21 Li H B, Zhang B B, Jiang Z H, et al. A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air [J]. J. Alloy. Compd., 2016, 686: 326
doi: 10.1016/j.jallcom.2016.06.023
22 Shu Y H, Wang F H, Wu W T. Synergistic effect of NaCl and water vapor on the corrosion of Fe-Cr alloys at 600 ℃ [J]. Acta Metall. Sin., 1999, 35: 1074
22 舒勇华, 王福会, 吴维. NaCl和水蒸气对Fe-Cr合金腐蚀行为的影响 [J]. 金属学报, 1999, 35: 1074
[1] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[2] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[3] 王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强. 固体氧化物燃料电池金属连接体腐蚀研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
[4] 官宇, 刘光明, 张民强, 刘欢欢, 柳志浩, 龚兵兵. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[5] 陈土春, 向军淮, 江龙发, 熊剑, 白凌云, 徐勋虎, 徐鑫成. Q235钢在氧化性含Cl气氛中的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[6] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[7] 梁书源, 姜翠玉. 电厂燃油锅炉腐蚀机理及防腐添加剂研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 105-116.
[8] 马双忱, 焦坤灵, 张立男, 孙尧, 吴文龙, 张小霓. 高温气相条件下硫酸氢铵与硫酸铵对20#碳钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 605-612.
[9] 张明明,辛丽,丁学勇,耿树江,朱圣龙,王福会. 600 ℃/NaCl-H2O-O2协同环境中Ti/TiAlN多层涂层的耐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 29-35.
[10] 李琰,鲁金涛,杨珍,朱明,谷月峰. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[11] 黄本生, 尹文锋, 王小红, 施宜君. 常减压装置常用钢材在高温原油馏分中的腐蚀研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 377-382.
[12] 潘太军,陈德贵,张轲,胡静. NF616和12CrMoV在模拟垃圾气化环境中的高温腐蚀[J]. 中国腐蚀与防护学报, 2011, 31(6): 457-461.
[13] 董泽华,何金杯,郭兴蓬,张耀享,汉继成. 环烷酸与有机硫对Cr5Mo钢高温腐蚀的交互作用研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 219-224.
[14] 任鑫; 杨怀玉; 王福会; 赵柱; 邵亚薇 . A3钢在钒化物中700℃下的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2002, 22(2): 92-94 .
[15] 张扬伟; 王富岗; 李德俊; 王大庸 . 化学热处理表面改性310SS高温腐蚀行为[J]. 中国腐蚀与防护学报, 2002, 22(1): 37-40 .