|
|
腐蚀电化学阻抗谱的数据解析与物理模型研究进展 |
郭玉杰1, 李艳辉2, 夏大海1( ), 胡文彬1 |
1 天津大学材料科学与工程学院 天津 300350 2 西安交通大学能源与动力工程学院 热流科学与工程教育部重点实验室 西安 710049 |
|
Data Analysis and Physical Model of Electrochemical Impedance Spectroscopy for Corrosion Systems: Progresses and Challenges |
GUO Yujie1, LI Yanhui2, XIA Da-Hai1( ), HU Wenbin1 |
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China 2 Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
郭玉杰, 李艳辉, 夏大海, 胡文彬. 腐蚀电化学阻抗谱的数据解析与物理模型研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
Yujie GUO,
Yanhui LI,
Da-Hai XIA,
Wenbin HU.
Data Analysis and Physical Model of Electrochemical Impedance Spectroscopy for Corrosion Systems: Progresses and Challenges[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1143-1160.
[1] |
Wang J K, Wu S H, Ma L W, et al. Corrosion resistant coating with passive protection and self-healing property based on Fe3O4-MBT nanoparticles [J]. Corros. Commun., 2022, 7: 1
|
[2] |
Jin Z Y, Zhao Z L, Zhao T, et al. One-step preparation of inhibitor-loaded nanocontainers and their application in self-healing coatings [J]. Corros. Commun., 2021, 2: 63
|
[3] |
Hinderliter B R, Croll S G, Tallman D E, et al. Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties [J]. Electrochim. Acta, 2006, 51: 4505
|
[4] |
Bierwagen G, Tallman D, Li J P, et al. EIS studies of coated metals in accelerated exposure [J]. Prog. Org. Coat., 2003, 46: 149
|
[5] |
Lazanas A C, Prodromidis M I. Electrochemical impedance spectroscopy─a tutorial [J]. ACS Meas. Sci. Au, 2023, 3: 162
|
[6] |
Macdonald D D. The history of the point defect model for the passive state: a brief review of film growth aspects [J]. Electrochim. Acta, 2011, 56: 1761
|
[7] |
Musiani M, Orazem M E, Pébère N, et al. Constant-phase-element behavior caused by coupled resistivity and permittivity distributions in films [J]. J. Electrochem. Soc., 2011, 158: C424
|
[8] |
Young L. Anodic oxide films. Part 4.—The interpretation of impedance measurements on oxide coated electrodes on niobium [J]. Trans. Faraday Soc., 1955, 51: 1250
|
[9] |
Gabrielli C. Once upon a time there was EIS [J]. Electrochim. Acta, 2020, 331: 135324
|
[10] |
Bard A J, Faulkner L R, White H S. Electrochemical Methods: Fundamentals and Applications [M]. 3rd ed. New York: Wiley, 2022: 261
|
[11] |
Huang V M W, Vivier V, Frateur I, et al. The global and local impedance response of a blocking disk electrode with local constant-phase-element behavior [J]. J. Electrochem. Soc., 2007, 154: C89
|
[12] |
Huang V M W, Vivier V, Orazem M E, et al. The apparent constant-phase-element behavior of an ideally polarized blocking electrode: a global and local impedance analysis [J]. J. Electrochem. Soc., 2007, 154: C81
|
[13] |
Havigh M D, Nabizadeh M, Wouters B, et al. Operando odd random phase electrochemical impedance spectroscopy (ORP-EIS) for in-situ monitoring of the Zr-based conversion coating growth in the presence of (in)organic additives [J]. Corros. Sci., 2023, 223: 111469
|
[14] |
Bayet E, Huet F, Keddam M, et al. A novel way of measuring local electrochemical impedance using a single vibrating probe [J]. J. Electrochem. Soc., 1997, 144: L87
|
[15] |
Bayet E, Huet F, Keddam M, et al. Local electrochemical impedance measurement: scanning vibrating electrode technique in ac mode [J]. Electrochim. Acta, 1999, 44: 4117
|
[16] |
Xu R, Wang J. Application of local electrochemical impedance technique in corrosion research [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 287
|
[16] |
续 冉, 王 佳. 局部电化学阻抗方法在腐蚀研究中的应用 [J]. 中国腐蚀与防护学报, 2015, 35: 287
|
[17] |
Van Gheem E, Pintelon R, Vereecken J, et al. Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour: Part I: theory and validation [J]. Electrochim. Acta, 2004, 49: 4753
|
[18] |
Breugelmans T, Lataire J, Muselle T, et al. Odd random phase multisine electrochemical impedance spectroscopy to quantify a non-stationary behaviour: theory and validation by calculating an instantaneous impedance value [J]. Electrochim. Acta, 2012, 76: 375
|
[19] |
Zhao T Y, Chen S, Qiu J, et al. Study on the passivation properties of austenitic stainless steel 316LN based on the point defect model [J]. Corros. Sci., 2024, 237: 112293
|
[20] |
MacDonald D D, Urquidi-Macdonald M. Distribution functions for the breakdown of passive films [J]. Electrochim. Acta, 1986, 31: 1079
|
[21] |
Agarwal P, Crisalle O D, Orazem M E, et al. Application of measurement models to impedance spectroscopy: II. determination of the stochastic contribution to the error structure [J]. J. Electrochem. Soc., 1995, 142: 4149
|
[22] |
Agarwal P, Orazem M E, Garcia-Rubio L H. Application of measurement models to impedance spectroscopy: III. evaluation of consistency with the kramers‐kronig relations [J]. J. Electrochem. Soc., 1995, 142: 4159
|
[23] |
Huet F. Software for simulating and fitting electrochemical impedances [Z]. https://lise-www.sorbonne-universite.fr/en/simad
|
[24] |
Li T S, Wu J, Frankel G S. Localized corrosion: passive film breakdown vs. pit growth stability, part VI: pit dissolution kinetics of different alloys and a model for pitting and repassivation potentials [J]. Corros. Sci., 2021, 182: 109277
|
[25] |
Sato N. An overview on the passivity of metals [J]. Corros. Sci., 1990, 31: 1
|
[26] |
Li K J, Sun L, Cao W K, et al. Pitting corrosion of 304 stainless steel in secondary water supply system [J]. Corros. Commun., 2022, 7: 43
|
[27] |
Wei X X, Zhang B, Wu B, et al. Enhanced corrosion resistance by engineering crystallography on metals [J]. Nat. Commun., 2022, 13: 726
doi: 10.1038/s41467-022-28368-8
pmid: 35132071
|
[28] |
Macdonald D D. Passivity-the key to our metals-based civilization [J]. Pure Appl. Chem., 1999, 71: 951
|
[29] |
Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
|
[30] |
Macdonald D D, Englehardt G. The point defect model for Bi-Layer passive films [J]. ECS Trans., 2010, 28(24): 123
|
[31] |
Yang J, Li Y H, Macdonald D D. Effects of temperature and pH on the electrochemical behaviour of alloy 600 in simulated pressurized water reactor primary water [J]. J. Nucl. Mater., 2020, 528: 151850
|
[32] |
Qiu J, Li Y H, Xu Y, et al. Effect of temperature on corrosion of carbon steel in simulated concrete pore solution under anoxic conditions [J]. Corros. Sci., 2020, 175: 108886
|
[33] |
Yang J, Li Y H, Xu A N, et al. The electrochemical properties of alloy 690 in simulated pressurized water reactor primary water: effect of temperature [J]. J. Nucl. Mater., 2019, 518: 305
doi: 10.1016/j.jnucmat.2019.03.016
|
[34] |
Sun L, Zhao T Y, Qiu J, et al. Point defect model for passivity breakdown on hyper-duplex stainless steel 2707 in solutions containing bromide at different temperatures [J]. Corros. Sci., 2022, 194: 109959
|
[35] |
Sikora E, Macdonald D D. Nature of the passive film on nickel [J]. Electrochim. Acta, 2002, 48: 69
|
[36] |
Zhang L, Macdonald D D. Segregation of alloying elements in passive systems—II. Numerical simulation [J]. Electrochim. Acta, 1998, 43: 2673
|
[37] |
Li Y H, Macdonald D D, Yang J, et al. Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics [J]. Corros. Sci., 2020, 163: 108280
|
[38] |
Kolotinskii D A, Nikolaev V S, Stegailov V V, et al. Point defect model for the kinetics of oxide film growth on the surface of T91 steel in contact with lead-bismuth eutectic [J]. Corros. Sci., 2023, 211: 110829
|
[39] |
Xia D H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
|
[39] |
夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 [J]. 金属学报, 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
|
[40] |
Liu Z, Wang J R, Qin Z B, et al. A mechanistic study on stress corrosion cracking of sensitized AA5083 in a simulated waterlevel fluctuation zone: combined impedance analysis and tensile tests [J]. Corros. Sci., 2025, 245: 112701
|
[41] |
Bongiorno V, Michailidou E, Curioni M. Evaluating organic coating performance by EIS: correlation between long-term EIS measurements and corrosion of the metal substrate [J]. Mater. Corros., 2024, 75: 156
|
[42] |
Olugbade T O, Oladapo B I, Omiyale B O. Electrochemical and microstructural characterization of a precipitation hardened 17-4 steel in different environments [J]. Colloids Surf., 2025, 706A: 135795
|
[43] |
Bösing I. Modeling electrochemical oxide film growth—passive and transpassive behavior of iron electrodes in halide-free solution [J]. npj Mater. Degrad., 2023, 7: 53
|
[44] |
Tribollet B, Vivier V, Orazem M E. EIS Technique in Passivity Studies: Determination of the Dielectric Properties of Passive Films [M]. Oxford: Elsevier, 2018: 94
|
[45] |
Baril G, Galicia G, Deslouis C, et al. An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions [J]. J. Electrochem. Soc., 2007, 154: C108
|
[46] |
Benbouzid A Z, Gomes M P, Costa I, et al. A new look on the corrosion mechanism of magnesium: an EIS investigation at different pH [J]. Corros. Sci., 2022, 205: 110463
|
[47] |
Alexander C L, Tribollet B, Orazem M E. Contribution of surface distributions to constant-phase-element (CPE) behavior: 1. influence of roughness [J]. Electrochim. Acta, 2015, 173: 416
|
[48] |
Alexander C L, Tribollet B, Orazem M E. Contribution of surface distributions to constant-phase-element (CPE) behavior: 2. capacitance [J]. Electrochim. Acta, 2016, 188: 566
|
[49] |
Alexander C L, Tribollet B, Vivier V, et al. Contribution of surface distributions to constant-phase-element (CPE) behavior: 3. adsorbed intermediates [J]. Electrochim. Acta, 2017, 251: 99
|
[50] |
Yamamoto T, Yamamoto Y. Electrical properties of the epidermal stratum corneum [J]. Med. Biol. Eng., 1976, 14: 151
pmid: 940370
|
[51] |
Hirschorn B, Orazem M E, Tribollet B, et al. Constant-phase-element behavior caused by resistivity distributions in films: I. theory [J]. J. Electrochem. Soc., 2010, 157: C452
|
[52] |
Bojinov M, Fabricius G, Laitinen T, et al. Coupling between ionic defect structure and electronic conduction in passive films on iron, chromium and iron-chromium alloys [J]. Electrochim. Acta, 2000, 45: 2029
|
[53] |
Schiller C A, Strunz W. The evaluation of experimental dielectric data of barrier coatings by means of different models [J]. Electrochim. Acta, 2001, 46: 3619
|
[54] |
Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters [J]. Electrochim. Acta, 2010, 55: 6218
|
[55] |
Qiao C, Wang Y Z, Jiang J L, et al. Understanding the corrosion protection effect by surface oxide film to underlying Sn solder substrate under thermal exposure condition [J]. Corros. Sci., 2024, 230: 111930
|
[56] |
Batalha W C, Jorge Junior A M, Mantel M, et al. The study of passive film's resistivity distribution to crystalline Fe-based pseudo high entropy alloys: The use of measurement model and Cole-Cole regression [J]. Corros. Sci., 2024, 230: 111905
|
[57] |
Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements [J]. Electrochim. Acta, 2020, 354: 136747
|
[58] |
Xia D H, Pan C C, Guo Y J, et al. Impedance analysis of 7050 Al-alloy in NaCl solution under cavitation erosion condition [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1196
|
[58] |
夏大海, 潘成成, 郭玉杰 等. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制 [J]. 中国腐蚀与防护学报, 2025, 45: 1196
|
[59] |
Ter-Ovanessian B, Galipaud J, Marcelin S, et al. Dielectric bi-layer model for electrochemical impedance spectroscopy characterisation of oxide film [J]. Electrochim. Acta, 2024, 492: 144307
|
[60] |
Li Y H, Bai Z Y, Ding S M, et al. Electrochemical techniques and mechanisms for the corrosion of metals and alloys in sub- and supercritical aqueous systems [J]. J. Supercrit. Fluids, 2023, 194: 105835
|
[61] |
Wang J M, Qian S D, Li Y H, et al. Passivity breakdown on 436 ferritic stainless steel in solutions containing chloride [J]. J. Mater. Sci. Technol., 2019, 35: 637
doi: 10.1016/j.jmst.2018.10.030
|
[62] |
Bacon R C, Smith J J, Rugg F M. Electrolytic resistance in evaluating protective merit of coatings on metals [J]. Ind. Eng. Chem., 1948, 40(1): 161
|
[63] |
Kinsella E M, Mayne J E O. Ionic conduction in polymer films I. Influence of electrolyte on resistance [J]. Br. Polym. J., 1969, 1: 173
|
[64] |
Mayne J E O. How paints prevent corrosion [J]. Anti-Corros. Methods Mater., 1954, 1: 286
|
[65] |
Amirudin A, Thieny D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals [J]. Prog. Org. Coat., 1995, 26: 1
|
[66] |
Murray J N. Electrochemical test methods for evaluating organic coatings on metals: an update. Part II: single test parameter measurements [J]. Prog. Org. Coat., 1997, 31: 255
|
[67] |
Murray J N. Electrochemical test methods for evaluating organic coatings on metals: an update. Part III: multiple test parameter measurements [J]. Prog. Org. Coat., 1997, 31: 375
|
[68] |
Murray J N. Electrochemical test methods for evaluating organic coatings on metals: an update. Part I. introduction and generalities regarding electrochemical testing of organic coatings [J]. Prog. Org. Coat., 1997, 30: 225
|
[69] |
Beaunier L, Epelboin I, Lestrade J C, et al. Etude electrochimique, et par microscopie electronique a balayage, du fer recouvert de peinture [J]. Surf. Technol., 1976, 4: 237
|
[70] |
Agarwal P, Orazem M E, Garcia‐Rubio L H. Measurement models for electrochemical impedance spectroscopy: I. demonstration of applicability [J]. J. Electrochem. Soc., 1992, 139: 1917
|
[71] |
Amand S, Musiani M, Orazem M E, et al. Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings [J]. Electrochim. Acta, 2013, 87: 693
|
[72] |
Nguyen A S, Musiani M, Orazem M E, et al. Impedance analysis of the distributed resistivity of coatings in dry and wet conditions [J]. Electrochim. Acta, 2015, 179: 452
|
[73] |
Meng F D, Liu L, Cui Y, et al. Evaluation of coating resistivity for pigmented/unpigmented epoxy coatings under marine alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64: 165
doi: 10.1016/j.jmst.2019.09.011
|
[74] |
Li Y N, Wang J, Zhang W. Comparative studies on the deterioration process of organic coatings under immersed and cyclic wet-dry conditions by EIS [J]. J. Electrochem., 2010, 16: 393
|
[74] |
李玉楠, 王 佳, 张 伟. 有机涂层在浸泡和干湿循环条件下劣化过程的EIS对比研究 [J]. 电化学, 2010, 16: 393
|
[75] |
Liu B, Fang Z G, Wang T, et al. Electrochemical behaviors of organic coating/matal substrate under simulated deep sea environment Part Ⅰ. effects of seawater pressure on transportation behavior of water through coating and coating's protective performance [J]. J. Electrochem., 2010, 16: 401
|
[75] |
刘 斌, 方志刚, 王 涛 等. 模拟深海压力环境下有机涂料/基底金属腐蚀电化学行为研究Ⅰ. 海水压力对水在涂层中传输行为和涂层防护性能的影响 [J]. 电化学, 2010, 16: 401
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|