Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1143-1160     CSTR: 32134.14.1005.4537.2024.381      DOI: 10.11902/1005.4537.2024.381
  综合评述 本期目录 | 过刊浏览 |
腐蚀电化学阻抗谱的数据解析与物理模型研究进展
郭玉杰1, 李艳辉2, 夏大海1(), 胡文彬1
1 天津大学材料科学与工程学院 天津 300350
2 西安交通大学能源与动力工程学院 热流科学与工程教育部重点实验室 西安 710049
Data Analysis and Physical Model of Electrochemical Impedance Spectroscopy for Corrosion Systems: Progresses and Challenges
GUO Yujie1, LI Yanhui2, XIA Da-Hai1(), HU Wenbin1
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2 Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

郭玉杰, 李艳辉, 夏大海, 胡文彬. 腐蚀电化学阻抗谱的数据解析与物理模型研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
Yujie GUO, Yanhui LI, Da-Hai XIA, Wenbin HU. Data Analysis and Physical Model of Electrochemical Impedance Spectroscopy for Corrosion Systems: Progresses and Challenges[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1143-1160.

全文: PDF(6490 KB)   HTML
摘要: 

电化学阻抗谱(EIS)是研究金属材料及其涂覆体系腐蚀电化学行为与失效机理的最重要的方法之一。随着腐蚀电化学理论、数值计算以及相应拟合软件的发展,EIS数据解析得到了很大发展。通过数据拟合与解析可得到表征钝化膜厚度、钝化膜电阻率分布、涂层电阻率分布等关键参数。当钝化膜破裂后,通过动力学模型推导Faraday阻抗ZF的表达式,可以解析各个电极反应的速度常数、扩散层厚度等参数。本文以钝态金属及其有机涂覆体系为案例,综述了电化学等效电路模型(ECM)、点缺陷模型(PDM)、电化学动力学模型、幂律模型(PLM)、Young模型在解析氧化膜性质、涂层性能和电极过程动力学参数中的应用,并讨论了每种方法的优缺点,最后指明了EIS数据解析与物理模型的发展趋势。

关键词 电化学阻抗谱有机涂层电化学等效电路幂律模型Young模型    
Abstract

Electrochemical impedance spectroscopy (EIS) is one of the most important methods for studying the electrochemical corrosion behavior and failure mechanisms of metallic materials and their coating systems. With the development of corrosion electrochemistry theory, numerical calculation, and corresponding fitting software, significant progress has been made in the analysis of EIS data. Through data fitting and analysis, key parameters such as the thickness of the passive film, the resistivity distribution of the passive film, and the resistivity distribution of the coating can be obtained. When the passive film breaks down, the expression of the Faraday impedance ZF can be derived through the kinetic model, correspondingly, the parameters such as the rate constants of each electrode reaction and the thickness of the diffusion layer can be analyzed. Taking passive metals and their organic coating systems as examples, this paper reviews the applications of the electrochemical equivalent circuit model (ECM), the point defect model (PDM), the electrochemical kinetic model, the power-law model (PLM), and the Young model in analyzing the properties of oxide films, the performance of coatings, and the kinetic parameters of electrode processes. Moreover, the advantages and disadvantages of each method are discussed. Finally, the development trends of EIS data analysis and physical models are pointed out.

Key wordsEIS    organic coating    electrochemical equivalent circuit    power-low model    Young model
收稿日期: 2024-11-25      32134.14.1005.4537.2024.381
ZTFLH:  TG174  
基金资助:国家自然科学基金(52031007);国家自然科学基金(52171077)
通讯作者: 夏大海,E-mail:dahaixia@tju.edu.cn,研究方向为腐蚀科学中的人工智能方法与应用
Corresponding author: XIA Da-Hai, E-mail: dahaixia@tju.edu.cn
作者简介: 郭玉杰,男,2001年生,硕士生
图1  PDM-II及PDM-III模型中在模型金属基体与双层钝化膜界面处点缺陷生成和湮灭反应示意图[28]
图2  镍基合金在高温水相体系中电化学腐蚀的典型等效电路示意图[33]
图3  钝态金属表面覆盖完整均匀钝化膜时的电化学等效电路[39]
图4  敏化5083铝合金样品钝化膜破裂时对应的电化学等效电路[40]
图5  与钝化膜阻抗响应相对应的R//C元件的分布[7]
图6  以γ为参数计算得到的幂律模型对应的理论Bode图[44]
图7  以γ为参数计算得到的幂律模型对应的归一化电阻率与位置之间的函数[44]
图8  以δ/λ为参数计算得到的Young模型对应的理论Bode图[44]
图9  以δ/λ为参数计算得到的Young模型对应的归一化电阻率与位置之间的函数[44]
SpecimenConditionLoading stressTest time / h
S1Full immersionNone12
S2Full immersion120%σs12
S3LHR1 (1-1)120%σs24
S4LHR1 (30-30)120%σs24
S5LHR1 (120-120)120%σs24
表1  5083铝合金的SCC实验条件[40]
图10  不同实验条件下敏化态5083-O样品的欧姆电阻校正Bode图[40]
图11  不同实验条件下测得的敏化态5083铝合金的EIS图谱[40]
图12  7050铝合金在3.5%NaCl溶液中空蚀条件下不同间隙宽度的EIS测试结果[58]
图13  图12进行欧姆电阻校正后的Bode图[58]
图14  7050铝合金在3.5%NaCl溶液中空蚀条件下测得EIS与非线性回归结果的对比[58]
图15  用于拟合金属/钝化膜/电解质界面阻抗响应的等效电路[59]
图16  Beaunier等提出的涂覆金属通用等效电路模型[69]
图17  Agarwal等提出的等效电路[70]
图18  金属基底/涂层/电解质系统示意图及其电化学等效电路[71]
图19  2024铝合金/混合溶胶-凝胶涂层在0.5 mol/L NaCl溶液中浸泡72 h后的阻抗图[71]
图20  在电解质中浸泡不同时间后带混合溶胶-凝胶涂层的2024铝合金的电阻率曲线[71]
图21  双层模型的示意图。假设涂层由具有均匀电阻率ρc的内层和电阻率随位置呈指数关系的外层组成[72]
图22  通过阻抗数据解析得出的在不同NaCl溶液中浸泡后的涂层电阻率随涂层厚度的变化曲线[72]
[1] Wang J K, Wu S H, Ma L W, et al. Corrosion resistant coating with passive protection and self-healing property based on Fe3O4-MBT nanoparticles [J]. Corros. Commun., 2022, 7: 1
[2] Jin Z Y, Zhao Z L, Zhao T, et al. One-step preparation of inhibitor-loaded nanocontainers and their application in self-healing coatings [J]. Corros. Commun., 2021, 2: 63
[3] Hinderliter B R, Croll S G, Tallman D E, et al. Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties [J]. Electrochim. Acta, 2006, 51: 4505
[4] Bierwagen G, Tallman D, Li J P, et al. EIS studies of coated metals in accelerated exposure [J]. Prog. Org. Coat., 2003, 46: 149
[5] Lazanas A C, Prodromidis M I. Electrochemical impedance spectroscopy─a tutorial [J]. ACS Meas. Sci. Au, 2023, 3: 162
[6] Macdonald D D. The history of the point defect model for the passive state: a brief review of film growth aspects [J]. Electrochim. Acta, 2011, 56: 1761
[7] Musiani M, Orazem M E, Pébère N, et al. Constant-phase-element behavior caused by coupled resistivity and permittivity distributions in films [J]. J. Electrochem. Soc., 2011, 158: C424
[8] Young L. Anodic oxide films. Part 4.—The interpretation of impedance measurements on oxide coated electrodes on niobium [J]. Trans. Faraday Soc., 1955, 51: 1250
[9] Gabrielli C. Once upon a time there was EIS [J]. Electrochim. Acta, 2020, 331: 135324
[10] Bard A J, Faulkner L R, White H S. Electrochemical Methods: Fundamentals and Applications [M]. 3rd ed. New York: Wiley, 2022: 261
[11] Huang V M W, Vivier V, Frateur I, et al. The global and local impedance response of a blocking disk electrode with local constant-phase-element behavior [J]. J. Electrochem. Soc., 2007, 154: C89
[12] Huang V M W, Vivier V, Orazem M E, et al. The apparent constant-phase-element behavior of an ideally polarized blocking electrode: a global and local impedance analysis [J]. J. Electrochem. Soc., 2007, 154: C81
[13] Havigh M D, Nabizadeh M, Wouters B, et al. Operando odd random phase electrochemical impedance spectroscopy (ORP-EIS) for in-situ monitoring of the Zr-based conversion coating growth in the presence of (in)organic additives [J]. Corros. Sci., 2023, 223: 111469
[14] Bayet E, Huet F, Keddam M, et al. A novel way of measuring local electrochemical impedance using a single vibrating probe [J]. J. Electrochem. Soc., 1997, 144: L87
[15] Bayet E, Huet F, Keddam M, et al. Local electrochemical impedance measurement: scanning vibrating electrode technique in ac mode [J]. Electrochim. Acta, 1999, 44: 4117
[16] Xu R, Wang J. Application of local electrochemical impedance technique in corrosion research [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 287
[16] 续 冉, 王 佳. 局部电化学阻抗方法在腐蚀研究中的应用 [J]. 中国腐蚀与防护学报, 2015, 35: 287
[17] Van Gheem E, Pintelon R, Vereecken J, et al. Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour: Part I: theory and validation [J]. Electrochim. Acta, 2004, 49: 4753
[18] Breugelmans T, Lataire J, Muselle T, et al. Odd random phase multisine electrochemical impedance spectroscopy to quantify a non-stationary behaviour: theory and validation by calculating an instantaneous impedance value [J]. Electrochim. Acta, 2012, 76: 375
[19] Zhao T Y, Chen S, Qiu J, et al. Study on the passivation properties of austenitic stainless steel 316LN based on the point defect model [J]. Corros. Sci., 2024, 237: 112293
[20] MacDonald D D, Urquidi-Macdonald M. Distribution functions for the breakdown of passive films [J]. Electrochim. Acta, 1986, 31: 1079
[21] Agarwal P, Crisalle O D, Orazem M E, et al. Application of measurement models to impedance spectroscopy: II. determination of the stochastic contribution to the error structure [J]. J. Electrochem. Soc., 1995, 142: 4149
[22] Agarwal P, Orazem M E, Garcia-Rubio L H. Application of measurement models to impedance spectroscopy: III. evaluation of consistency with the kramers‐kronig relations [J]. J. Electrochem. Soc., 1995, 142: 4159
[23] Huet F. Software for simulating and fitting electrochemical impedances [Z]. https://lise-www.sorbonne-universite.fr/en/simad
[24] Li T S, Wu J, Frankel G S. Localized corrosion: passive film breakdown vs. pit growth stability, part VI: pit dissolution kinetics of different alloys and a model for pitting and repassivation potentials [J]. Corros. Sci., 2021, 182: 109277
[25] Sato N. An overview on the passivity of metals [J]. Corros. Sci., 1990, 31: 1
[26] Li K J, Sun L, Cao W K, et al. Pitting corrosion of 304 stainless steel in secondary water supply system [J]. Corros. Commun., 2022, 7: 43
[27] Wei X X, Zhang B, Wu B, et al. Enhanced corrosion resistance by engineering crystallography on metals [J]. Nat. Commun., 2022, 13: 726
doi: 10.1038/s41467-022-28368-8 pmid: 35132071
[28] Macdonald D D. Passivity-the key to our metals-based civilization [J]. Pure Appl. Chem., 1999, 71: 951
[29] Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
[30] Macdonald D D, Englehardt G. The point defect model for Bi-Layer passive films [J]. ECS Trans., 2010, 28(24): 123
[31] Yang J, Li Y H, Macdonald D D. Effects of temperature and pH on the electrochemical behaviour of alloy 600 in simulated pressurized water reactor primary water [J]. J. Nucl. Mater., 2020, 528: 151850
[32] Qiu J, Li Y H, Xu Y, et al. Effect of temperature on corrosion of carbon steel in simulated concrete pore solution under anoxic conditions [J]. Corros. Sci., 2020, 175: 108886
[33] Yang J, Li Y H, Xu A N, et al. The electrochemical properties of alloy 690 in simulated pressurized water reactor primary water: effect of temperature [J]. J. Nucl. Mater., 2019, 518: 305
doi: 10.1016/j.jnucmat.2019.03.016
[34] Sun L, Zhao T Y, Qiu J, et al. Point defect model for passivity breakdown on hyper-duplex stainless steel 2707 in solutions containing bromide at different temperatures [J]. Corros. Sci., 2022, 194: 109959
[35] Sikora E, Macdonald D D. Nature of the passive film on nickel [J]. Electrochim. Acta, 2002, 48: 69
[36] Zhang L, Macdonald D D. Segregation of alloying elements in passive systems—II. Numerical simulation [J]. Electrochim. Acta, 1998, 43: 2673
[37] Li Y H, Macdonald D D, Yang J, et al. Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics [J]. Corros. Sci., 2020, 163: 108280
[38] Kolotinskii D A, Nikolaev V S, Stegailov V V, et al. Point defect model for the kinetics of oxide film growth on the surface of T91 steel in contact with lead-bismuth eutectic [J]. Corros. Sci., 2023, 211: 110829
[39] Xia D H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
[39] 夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 [J]. 金属学报, 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
[40] Liu Z, Wang J R, Qin Z B, et al. A mechanistic study on stress corrosion cracking of sensitized AA5083 in a simulated waterlevel fluctuation zone: combined impedance analysis and tensile tests [J]. Corros. Sci., 2025, 245: 112701
[41] Bongiorno V, Michailidou E, Curioni M. Evaluating organic coating performance by EIS: correlation between long-term EIS measurements and corrosion of the metal substrate [J]. Mater. Corros., 2024, 75: 156
[42] Olugbade T O, Oladapo B I, Omiyale B O. Electrochemical and microstructural characterization of a precipitation hardened 17-4 steel in different environments [J]. Colloids Surf., 2025, 706A: 135795
[43] Bösing I. Modeling electrochemical oxide film growth—passive and transpassive behavior of iron electrodes in halide-free solution [J]. npj Mater. Degrad., 2023, 7: 53
[44] Tribollet B, Vivier V, Orazem M E. EIS Technique in Passivity Studies: Determination of the Dielectric Properties of Passive Films [M]. Oxford: Elsevier, 2018: 94
[45] Baril G, Galicia G, Deslouis C, et al. An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions [J]. J. Electrochem. Soc., 2007, 154: C108
[46] Benbouzid A Z, Gomes M P, Costa I, et al. A new look on the corrosion mechanism of magnesium: an EIS investigation at different pH [J]. Corros. Sci., 2022, 205: 110463
[47] Alexander C L, Tribollet B, Orazem M E. Contribution of surface distributions to constant-phase-element (CPE) behavior: 1. influence of roughness [J]. Electrochim. Acta, 2015, 173: 416
[48] Alexander C L, Tribollet B, Orazem M E. Contribution of surface distributions to constant-phase-element (CPE) behavior: 2. capacitance [J]. Electrochim. Acta, 2016, 188: 566
[49] Alexander C L, Tribollet B, Vivier V, et al. Contribution of surface distributions to constant-phase-element (CPE) behavior: 3. adsorbed intermediates [J]. Electrochim. Acta, 2017, 251: 99
[50] Yamamoto T, Yamamoto Y. Electrical properties of the epidermal stratum corneum [J]. Med. Biol. Eng., 1976, 14: 151
pmid: 940370
[51] Hirschorn B, Orazem M E, Tribollet B, et al. Constant-phase-element behavior caused by resistivity distributions in films: I. theory [J]. J. Electrochem. Soc., 2010, 157: C452
[52] Bojinov M, Fabricius G, Laitinen T, et al. Coupling between ionic defect structure and electronic conduction in passive films on iron, chromium and iron-chromium alloys [J]. Electrochim. Acta, 2000, 45: 2029
[53] Schiller C A, Strunz W. The evaluation of experimental dielectric data of barrier coatings by means of different models [J]. Electrochim. Acta, 2001, 46: 3619
[54] Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters [J]. Electrochim. Acta, 2010, 55: 6218
[55] Qiao C, Wang Y Z, Jiang J L, et al. Understanding the corrosion protection effect by surface oxide film to underlying Sn solder substrate under thermal exposure condition [J]. Corros. Sci., 2024, 230: 111930
[56] Batalha W C, Jorge Junior A M, Mantel M, et al. The study of passive film's resistivity distribution to crystalline Fe-based pseudo high entropy alloys: The use of measurement model and Cole-Cole regression [J]. Corros. Sci., 2024, 230: 111905
[57] Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements [J]. Electrochim. Acta, 2020, 354: 136747
[58] Xia D H, Pan C C, Guo Y J, et al. Impedance analysis of 7050 Al-alloy in NaCl solution under cavitation erosion condition [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1196
[58] 夏大海, 潘成成, 郭玉杰 等. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制 [J]. 中国腐蚀与防护学报, 2025, 45: 1196
[59] Ter-Ovanessian B, Galipaud J, Marcelin S, et al. Dielectric bi-layer model for electrochemical impedance spectroscopy characterisation of oxide film [J]. Electrochim. Acta, 2024, 492: 144307
[60] Li Y H, Bai Z Y, Ding S M, et al. Electrochemical techniques and mechanisms for the corrosion of metals and alloys in sub- and supercritical aqueous systems [J]. J. Supercrit. Fluids, 2023, 194: 105835
[61] Wang J M, Qian S D, Li Y H, et al. Passivity breakdown on 436 ferritic stainless steel in solutions containing chloride [J]. J. Mater. Sci. Technol., 2019, 35: 637
doi: 10.1016/j.jmst.2018.10.030
[62] Bacon R C, Smith J J, Rugg F M. Electrolytic resistance in evaluating protective merit of coatings on metals [J]. Ind. Eng. Chem., 1948, 40(1): 161
[63] Kinsella E M, Mayne J E O. Ionic conduction in polymer films I. Influence of electrolyte on resistance [J]. Br. Polym. J., 1969, 1: 173
[64] Mayne J E O. How paints prevent corrosion [J]. Anti-Corros. Methods Mater., 1954, 1: 286
[65] Amirudin A, Thieny D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals [J]. Prog. Org. Coat., 1995, 26: 1
[66] Murray J N. Electrochemical test methods for evaluating organic coatings on metals: an update. Part II: single test parameter measurements [J]. Prog. Org. Coat., 1997, 31: 255
[67] Murray J N. Electrochemical test methods for evaluating organic coatings on metals: an update. Part III: multiple test parameter measurements [J]. Prog. Org. Coat., 1997, 31: 375
[68] Murray J N. Electrochemical test methods for evaluating organic coatings on metals: an update. Part I. introduction and generalities regarding electrochemical testing of organic coatings [J]. Prog. Org. Coat., 1997, 30: 225
[69] Beaunier L, Epelboin I, Lestrade J C, et al. Etude electrochimique, et par microscopie electronique a balayage, du fer recouvert de peinture [J]. Surf. Technol., 1976, 4: 237
[70] Agarwal P, Orazem M E, Garcia‐Rubio L H. Measurement models for electrochemical impedance spectroscopy: I. demonstration of applicability [J]. J. Electrochem. Soc., 1992, 139: 1917
[71] Amand S, Musiani M, Orazem M E, et al. Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings [J]. Electrochim. Acta, 2013, 87: 693
[72] Nguyen A S, Musiani M, Orazem M E, et al. Impedance analysis of the distributed resistivity of coatings in dry and wet conditions [J]. Electrochim. Acta, 2015, 179: 452
[73] Meng F D, Liu L, Cui Y, et al. Evaluation of coating resistivity for pigmented/unpigmented epoxy coatings under marine alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64: 165
doi: 10.1016/j.jmst.2019.09.011
[74] Li Y N, Wang J, Zhang W. Comparative studies on the deterioration process of organic coatings under immersed and cyclic wet-dry conditions by EIS [J]. J. Electrochem., 2010, 16: 393
[74] 李玉楠, 王 佳, 张 伟. 有机涂层在浸泡和干湿循环条件下劣化过程的EIS对比研究 [J]. 电化学, 2010, 16: 393
[75] Liu B, Fang Z G, Wang T, et al. Electrochemical behaviors of organic coating/matal substrate under simulated deep sea environment Part Ⅰ. effects of seawater pressure on transportation behavior of water through coating and coating's protective performance [J]. J. Electrochem., 2010, 16: 401
[75] 刘 斌, 方志刚, 王 涛 等. 模拟深海压力环境下有机涂料/基底金属腐蚀电化学行为研究Ⅰ. 海水压力对水在涂层中传输行为和涂层防护性能的影响 [J]. 电化学, 2010, 16: 401
[1] 李婕, 孟凡帝, 孙学思, 李佳妮, 陈思涵, 李则蓝, 迟剑宁, 亓海霞, 王福会, 刘莉. 基于多尺度图像特征融合的有机涂层寿命预测研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1205-1218.
[2] 夏大海, 潘成成, 郭玉杰, 胡文彬, TRIBOLLET Bernard. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[3] 何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[4] 李丽, 李善文, 史洪微, 梁国平, 李春霖, 孙禹, 秦晋, 王伟, 韩恩厚. 高速列车用铝合金环氧底漆的腐蚀行为和湿热老化机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[5] 陈丽娟, 晁刘伟, 赵景茂. CeO2@Zr-MOF复合材料的制备及其对环氧涂层保护性能的提升作用[J]. 中国腐蚀与防护学报, 2025, 45(3): 664-674.
[6] 王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[7] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[8] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[9] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[10] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[11] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[12] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[13] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[14] 孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[15] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.