|
|
聚脲-硅烷复合涂层对混凝土抗结冰性能的影响 |
蒋袁圆1, 段宇炜1, 王珩1,2,3, 戈雪良1,2,3,4( ) |
1 南京水利科学研究院 南京 210029 2 国家能源水电工程安全与环境技术研发中心 南京 210029 3 水利部水工新材料工程研究中心 南京 210029 4 水灾害防御全国重点实验室 南京 210029 |
|
Effect of PU-HDTMS Coatings on Anti-icing Performance of Concrete |
JIANG Yuanyuan1, DUAN Yuwei1, WANG Heng1,2,3, GE Xueliang1,2,3,4( ) |
1 Nanjing Hydraulic Research Institute, Nanjing 210029, China 2 R&D Center of Hydropower Engineering Safety and Environment Technology, NEA, Nanjing 210029, China 3 Research Center on New Materials in Hydraulic Structures of Ministry of Water Resources, Nanjing 210029, China 4 National Key Laboratory of Water Disaster Prevention, Nanjing 210029, China |
引用本文:
蒋袁圆, 段宇炜, 王珩, 戈雪良. 聚脲-硅烷复合涂层对混凝土抗结冰性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1135-1142.
Yuanyuan JIANG,
Yuwei DUAN,
Heng WANG,
Xueliang GE.
Effect of PU-HDTMS Coatings on Anti-icing Performance of Concrete[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1135-1142.
[1] |
Liu M K, Guan H, Huang M H. Operation mode of canal system in freezing period [J]. South-North Water Transf. Water Sci. Technol., 2020, 18: 195
|
[1] |
(刘孟凯, 关 惠, 黄明海. 封冻期渠系运行方式 [J]. 南水北调与水利科技, 2020, 18: 195)
|
[2] |
Li C X, Duan W G, Ma X, et al. Regression model of water temperature in winter for the Beijing-Shijiazhuang section of middle route of South-to-North Water Transfer Project [J]. South-North Water Transf. Water Sci. Technol., 2023, 21: 352
|
[2] |
(李程喜, 段文刚, 马 啸 等. 南水北调中线工程京石段冬季水温回归预测模型 [J]. 南水北调与水利科技, 2023, 21: 352)
|
[3] |
Qin W S, Li Y X, Deng H, et al. Experimental study on single-side freeze-thaw of airport pavement concrete under the action of potassium formate deicing liquid [J]. China Concrete Cement Prod., 2023, (3): 1
|
[3] |
(卿汶松, 李玉香, 邓 浩 等. 甲酸钾除冰液作用下机场道面混凝土单面冻融试验研究 [J]. 混凝土与水泥制品, 2023, (3): 1)
|
[4] |
Bai E L, Liu J L, Zhao J, et al. Study on deicing efficiency and surface temperature distribution of concrete pavement by microwave heating [J]. J. Huanghe S & T College, 2024, 26(8): 53
|
[4] |
(白二雷, 刘俊良, 赵 靖 等. 混凝土道面微波加热除冰效率及表面温度分布研究 [J]. 黄河科技学院学报, 2024, 26(8): 53)
|
[5] |
Arabzadeh A, Ceylan H, Kim S, et al. Superhydrophobic coatings on portland cement concrete surfaces [J]. Construct. Build. Mater., 2017, 141: 393
|
[6] |
Nine M J, Chizhova A, Maher S, et al. Ice-fouling on superhydrophobic and slippery surfaces textured by 3D printing: Revealing key limiting factors [J]. Surf. Interf., 2023, 40: 103005
|
[7] |
He Z W, Zhuo Y Z, Wang F, et al. Design and preparation of icephobic PDMS-based coatings by introducing an aqueous lubricating layer and macro-crack initiators at the ice-substrate interface [J]. Prog. Org. Coat., 2020, 147: 105737
|
[8] |
Xiong Y, Zhang Z H, Liu Y, et al. Loading of aerogels in self-healable polyurea foam to prepare superhydrophobic tough coating with ultra-long freezing delay time and high durability [J]. Surf. Interf., 2024, 51: 104763
|
[9] |
Wang T L, Guo Q, Zhang T C, et al. Large-scale prepared superhydrophobic HDTMS-modified diatomite/epoxy resin composite coatings for high-performance corrosion protection of magnesium alloys [J]. Prog. Org. Coat., 2022, 170: 106999
|
[10] |
Xiao T, Wei K, Wang Y D, et al. Transparent and durable PDMS(O)/HDTMS anti-icing surfaces derived from candle soot [J]. Surf. Coat. Technol., 2022, 445: 128717
|
[11] |
Yin B, Xu H F, Fan F Y, et al. Superhydrophobic coatings based on bionic mineralization for improving the durability of marine concrete [J]. Construct. Build. Mater., 2023, 362: 129705
|
[12] |
Wu S W, Du Y J, Alsaid Y, et al. Superhydrophobic photothermal icephobic surfaces based on candle soot [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 11240
doi: 10.1073/pnas.2001972117
pmid: 32393646
|
[13] |
Shen C, Zhu Y Q, Shi W N, et al. Mechanically stable superhydrophobic surface on cement-based materials [J]. Chem. Phys., 2020, 538: 110912
|
[14] |
Wu Y L, Shu X, Yang Y, et al. Fabrication of robust and room-temperature curable superhydrophobic composite coatings with breathable and anti-icing performance [J]. Chem. Eng. J., 2023, 463: 142444
|
[15] |
Xiao Y H, Zheng J, He Y M. Investigation of wetting behaviors for air bubble on rough surfaces [J]. Mater. Rep., 2023, 37: 22030060
|
[15] |
(肖易航, 郑 军, 何勇明. 气泡在粗糙表面的润湿行为研究 [J]. 材料导报, 2023, 37: 22030060)
|
[16] |
Muangnapoh T, Janampansang N, Chuphong S, et al. The study of the anti-icing performance of superhydrophobic silica-nanostructured metal substrates [J]. Colloid Interf. Sci. Commun., 2023, 57: 100745
|
[17] |
Polizos G, Jang G G, Smith D B, et al. Transparent superhydrophobic surfaces using a spray coating process [J]. Solar Energy Mater. Solar Cells, 2018, 176: 405
|
[18] |
Zhong P, Li J. Adhesion behavior of polyurea coating system on concrete surface [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 348
|
[18] |
(钟 萍, 李 健. 聚脲涂层体系在混凝土表面的附着性能研究 [J]. 中国腐蚀与防护学报, 2011, 31: 348)
|
[19] |
Wei M, Fu D S, Fu Y. Silane coupling agents on metals [J]. Surf. Technol., 1999, (4): 37
|
[19] |
(威 姆, 傅德生, 傅 原. 硅烷偶联剂在金属上的应用 [J]. 表面技术, 1999, (4): 37)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|