Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1135-1142     CSTR: 32134.14.1005.4537.2024.303      DOI: 10.11902/1005.4537.2024.303
  研究报告 本期目录 | 过刊浏览 |
聚脲-硅烷复合涂层对混凝土抗结冰性能的影响
蒋袁圆1, 段宇炜1, 王珩1,2,3, 戈雪良1,2,3,4()
1 南京水利科学研究院 南京 210029
2 国家能源水电工程安全与环境技术研发中心 南京 210029
3 水利部水工新材料工程研究中心 南京 210029
4 水灾害防御全国重点实验室 南京 210029
Effect of PU-HDTMS Coatings on Anti-icing Performance of Concrete
JIANG Yuanyuan1, DUAN Yuwei1, WANG Heng1,2,3, GE Xueliang1,2,3,4()
1 Nanjing Hydraulic Research Institute, Nanjing 210029, China
2 R&D Center of Hydropower Engineering Safety and Environment Technology, NEA, Nanjing 210029, China
3 Research Center on New Materials in Hydraulic Structures of Ministry of Water Resources, Nanjing 210029, China
4 National Key Laboratory of Water Disaster Prevention, Nanjing 210029, China
引用本文:

蒋袁圆, 段宇炜, 王珩, 戈雪良. 聚脲-硅烷复合涂层对混凝土抗结冰性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1135-1142.
Yuanyuan JIANG, Yuwei DUAN, Heng WANG, Xueliang GE. Effect of PU-HDTMS Coatings on Anti-icing Performance of Concrete[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1135-1142.

全文: PDF(6509 KB)   HTML
摘要: 

通过乙醇分别对聚脲树脂(PU)和十六烷基三甲氧基硅烷(HDTMS)进行稀释,在混凝土表面构建3%~100%范围内14种浓度的PU涂层和1%~30%范围内8种浓度的HDTMS涂层,对比研究了不同涂层的接触角,并根据两种试剂的最佳浓度制备了PU-HDTMS涂层。在环境温度为-20 ℃的低温条件下,通过结冰时间、不同倾斜角度下涂层的积冰量以及冰-涂层粘结强度综合评价涂层的抗结冰性能;根据多次结冰-除冰循环,测定涂层的抗结冰耐久性。结果表明:PU涂层和HDTMS涂层的最佳浓度分别为7%和5%;100%浓度的PU涂层表面光滑,冰粘结强度较低但延缓结冰时间效果不显著,稀释后抗结冰性能下降;对于HDTMS涂层,5%浓度能有效延缓结冰时间且冰粘结强度较低。PU-HDTMS涂层的接触角为153.38°,具有更好的抗结冰性能和抗结冰耐久性。

关键词 聚脲树脂硅烷接触角抗结冰性能抗结冰耐久性    
Abstract

As raw materials, polyurea resin (PU) and hexadecyltrimethoxysilane (HDTMS) were diluted with ethanol, then PU paints with concentrations of 3% to 100%, and HDTMS paints with concentrations of 1% to 30% were prepared respectively, of which the contact angles for water were comparatively examined. Meanwhile, a composite paint of PU-HDTMS based on the optimal concentrations of the above two paints was prepared. Further, coatings of PU, HDTMS and PU-HDTMS were applied on mortar blocks respectively. The anti-icing performance of the coatings was comprehensively evaluated by measuring the static freezing time on the coatings, the amount of ice accumulation on the coatings at various tilt angles, and the bond strength between the formed ice and the coatings at -20 ℃. The anti-icing durability of the coatings was assessed through multiple icing-deicing circles. The results indicated that the optimal concentrations for PU and HDTMS coatings were 7% and 5%, respectively. The surface of the 100%PU coating was smooth and exhibited low ice bond strength; however, its effectiveness in delaying freezing time was not significant, and the icing resistance of PU coatings decreased upon dilution. In contrast, the 5%HDTMS coating effectively delayed the freezing time while also demonstrating low ice bond strength. The contact angle of the PU-HDTMS coating was measured as 153.38°, which was superior to that of both the PU and HDTMS coatings.

Key wordspolyurea resin    silane    contact angle    anti-icing performance    anti-icing durability
收稿日期: 2024-09-19      32134.14.1005.4537.2024.303
ZTFLH:  TV49  
基金资助:国家重点研发计划(2022YFC3202500);国家自然科学基金(11932006);南京水利科学研究院研究生学位论文基金(Yy424005)
通讯作者: 戈雪良,E-mail:xlge@nhri.cn,研究方向为水工新材料
Corresponding author: GE Xueliang, E-mail: xlge@nhri.cn
作者简介: 蒋袁圆,女,2000年生,硕士生
图1  不同涂层的制备流程
图2  PU含量不同的PU涂层的接触角
图3  HDTMS含量不同的HDTMS涂层的接触角
图4  PU-HDTMS复合涂层接触角
图5  各涂层结冰时间
图6  不同倾角下各涂层的结冰形貌
图7  各种涂层的抗剪粘结强度与接触角
图8  各种涂层的抗拉粘结强度与接触角
图9  各种涂层样品经历不同次数结冰-除冰循环后的抗拉粘结强度,结冰除冰循环前后各涂层接触角,以及抗拉粘结强度增加率随接触角降低率的变化关系
图10  PU固化反应以及HDTMS和PU-HDTMS的改性机理
[1] Liu M K, Guan H, Huang M H. Operation mode of canal system in freezing period [J]. South-North Water Transf. Water Sci. Technol., 2020, 18: 195
[1] (刘孟凯, 关 惠, 黄明海. 封冻期渠系运行方式 [J]. 南水北调与水利科技, 2020, 18: 195)
[2] Li C X, Duan W G, Ma X, et al. Regression model of water temperature in winter for the Beijing-Shijiazhuang section of middle route of South-to-North Water Transfer Project [J]. South-North Water Transf. Water Sci. Technol., 2023, 21: 352
[2] (李程喜, 段文刚, 马 啸 等. 南水北调中线工程京石段冬季水温回归预测模型 [J]. 南水北调与水利科技, 2023, 21: 352)
[3] Qin W S, Li Y X, Deng H, et al. Experimental study on single-side freeze-thaw of airport pavement concrete under the action of potassium formate deicing liquid [J]. China Concrete Cement Prod., 2023, (3): 1
[3] (卿汶松, 李玉香, 邓 浩 等. 甲酸钾除冰液作用下机场道面混凝土单面冻融试验研究 [J]. 混凝土与水泥制品, 2023, (3): 1)
[4] Bai E L, Liu J L, Zhao J, et al. Study on deicing efficiency and surface temperature distribution of concrete pavement by microwave heating [J]. J. Huanghe S & T College, 2024, 26(8): 53
[4] (白二雷, 刘俊良, 赵 靖 等. 混凝土道面微波加热除冰效率及表面温度分布研究 [J]. 黄河科技学院学报, 2024, 26(8): 53)
[5] Arabzadeh A, Ceylan H, Kim S, et al. Superhydrophobic coatings on portland cement concrete surfaces [J]. Construct. Build. Mater., 2017, 141: 393
[6] Nine M J, Chizhova A, Maher S, et al. Ice-fouling on superhydrophobic and slippery surfaces textured by 3D printing: Revealing key limiting factors [J]. Surf. Interf., 2023, 40: 103005
[7] He Z W, Zhuo Y Z, Wang F, et al. Design and preparation of icephobic PDMS-based coatings by introducing an aqueous lubricating layer and macro-crack initiators at the ice-substrate interface [J]. Prog. Org. Coat., 2020, 147: 105737
[8] Xiong Y, Zhang Z H, Liu Y, et al. Loading of aerogels in self-healable polyurea foam to prepare superhydrophobic tough coating with ultra-long freezing delay time and high durability [J]. Surf. Interf., 2024, 51: 104763
[9] Wang T L, Guo Q, Zhang T C, et al. Large-scale prepared superhydrophobic HDTMS-modified diatomite/epoxy resin composite coatings for high-performance corrosion protection of magnesium alloys [J]. Prog. Org. Coat., 2022, 170: 106999
[10] Xiao T, Wei K, Wang Y D, et al. Transparent and durable PDMS(O)/HDTMS anti-icing surfaces derived from candle soot [J]. Surf. Coat. Technol., 2022, 445: 128717
[11] Yin B, Xu H F, Fan F Y, et al. Superhydrophobic coatings based on bionic mineralization for improving the durability of marine concrete [J]. Construct. Build. Mater., 2023, 362: 129705
[12] Wu S W, Du Y J, Alsaid Y, et al. Superhydrophobic photothermal icephobic surfaces based on candle soot [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 11240
doi: 10.1073/pnas.2001972117 pmid: 32393646
[13] Shen C, Zhu Y Q, Shi W N, et al. Mechanically stable superhydrophobic surface on cement-based materials [J]. Chem. Phys., 2020, 538: 110912
[14] Wu Y L, Shu X, Yang Y, et al. Fabrication of robust and room-temperature curable superhydrophobic composite coatings with breathable and anti-icing performance [J]. Chem. Eng. J., 2023, 463: 142444
[15] Xiao Y H, Zheng J, He Y M. Investigation of wetting behaviors for air bubble on rough surfaces [J]. Mater. Rep., 2023, 37: 22030060
[15] (肖易航, 郑 军, 何勇明. 气泡在粗糙表面的润湿行为研究 [J]. 材料导报, 2023, 37: 22030060)
[16] Muangnapoh T, Janampansang N, Chuphong S, et al. The study of the anti-icing performance of superhydrophobic silica-nanostructured metal substrates [J]. Colloid Interf. Sci. Commun., 2023, 57: 100745
[17] Polizos G, Jang G G, Smith D B, et al. Transparent superhydrophobic surfaces using a spray coating process [J]. Solar Energy Mater. Solar Cells, 2018, 176: 405
[18] Zhong P, Li J. Adhesion behavior of polyurea coating system on concrete surface [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 348
[18] (钟 萍, 李 健. 聚脲涂层体系在混凝土表面的附着性能研究 [J]. 中国腐蚀与防护学报, 2011, 31: 348)
[19] Wei M, Fu D S, Fu Y. Silane coupling agents on metals [J]. Surf. Technol., 1999, (4): 37
[19] (威 姆, 傅德生, 傅 原. 硅烷偶联剂在金属上的应用 [J]. 表面技术, 1999, (4): 37)
[1] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[2] 江杰, 姜建军, 杨丽景, 雷步芳, 赵宇, 林建强, 宋振纶. 烧结NdFeB表面Zn-Al涂层制备及耐腐蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.
[3] 曹京宜, 臧勃林, 曹宝学, 李亮, 方志刚, 郑宏鹏, 刘莉, 王福会. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1009-1015.
[4] 陈小涵, 周金赫, 胡吉明. 丙二醇对四甲氧基硅烷水解缩聚行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 717-723.
[5] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[6] 于帅先, 吴亚军, 武海生, 吴量, 麻彦龙, 邓盛卫, 孙立东. 钛酸酯改性硅烷涂层优化及其对5056铝箔耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[7] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[8] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[9] 王彭生, 李传夫, 倪静姁. 硅烷保护混凝土结构耐久性提升分析与寿命计算[J]. 中国腐蚀与防护学报, 2021, 41(5): 712-716.
[10] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[11] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[12] 左银泽, 陈亮, 冯清, 高延敏. PFOA/硅烷偶联剂分子自组装膜对环氧带锈涂层性能影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 554-560.
[13] 崔学军,代鑫,郑冰玉,张颖君. KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 227-232.
[14] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[15] 丁诗炳,项腾飞,李澄,郑顺丽,王绮,杜梦萍. 两步法制备超疏水耐蚀镍镀层[J]. 中国腐蚀与防护学报, 2016, 36(5): 450-456.