|
|
镁合金在海洋环境中的腐蚀与防护研究 |
魏然1,2,3, 蒋全通1,2,3( ), 孙琛4, 王伟伟4, 段继周1,2,3, 侯保荣1,2,3 |
1.中国科学院海洋研究所 海洋关键材料全国重点实验室 青岛 266071 2.三亚海洋生态环境工程研究院 三亚 572000 3.中国科学院大学 北京 100049 4.中国质量认证中心青岛分中心 青岛 266061 |
|
A Review on Corrosion and Protection of Mg-alloy in Marine Environment |
WEI Ran1,2,3, JIANG Quantong1,2,3( ), SUN Chen4, WANG Weiwei4, DUAN Jizhou1,2,3, HOU Baorong1,2,3 |
1.Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2.Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China 3.University of Chinese Academy of Sciences, Beijing 100049, China 4.China Quality Certification Centre Qingdao Branch, Qingdao 266061, China |
引用本文:
魏然, 蒋全通, 孙琛, 王伟伟, 段继周, 侯保荣. 镁合金在海洋环境中的腐蚀与防护研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 533-547.
Ran WEI,
Quantong JIANG,
Chen SUN,
Weiwei WANG,
Jizhou DUAN,
Baorong HOU.
A Review on Corrosion and Protection of Mg-alloy in Marine Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 533-547.
[1] |
Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnesium Alloys, 2019, 7: 536
|
[2] |
Hu W Y, Le Q C, Zhang Z Q, et al. Numerical simulation of DC casting of AZ31 magnesium slab at different casting speeds [J]. J. Magnesium Alloys, 2013, 1: 88
|
[3] |
Huang Y D, Zhang Y P, Song J F, et al. Development and prospects of degradable magnesium alloys for structural and functional applications in the fields of environment and energy [J]. J. Magnesium Alloys, 2023, 11: 3926
|
[4] |
Hasan M, Begum L. Semi-continuous casting of magnesium alloy AZ91 using a filtered melt delivery system [J]. J. Magnesium Alloys, 2015, 3: 283
|
[5] |
Bai J Y, Yang Y, Wen C, et al. Applications of magnesium alloys for aerospace: a review [J]. J. Magnesium Alloys, 2023, 11: 3609
|
[6] |
Zhao Z, Zong L S, Liu C D, et al. A novel Mg(OH)2/MgF x (OH)1- x composite coating on biodegradable magnesium alloy for coronary stent application [J]. Corros. Sci., 2022, 208: 110627
|
[7] |
Wang G G, Weiler J P. Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications [J]. J. Magnesium Alloys, 2023, 11: 78
|
[8] |
Luo C, Wu X, Song H Q, et al. Analysis of application requirements and research directions of magnesium alloys for aircraft engines serving in marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 787
|
[8] |
骆 晨, 吴 雄, 宋汉强 等. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析 [J]. 中国腐蚀与防护学报, 2023, 43: 787
|
[9] |
Chen J L, Sun L, Wang K, et al. Research and applications of rechargeable seawater battery [J]. J. Energy Storage, 2024, 76: 109659
|
[10] |
Mei D, Li Y Q, Tian Y S, et al. The effect of selected corrosion inhibitors on localized corrosion of magnesium alloy: The expanded understanding of "inhibition efficiency" [J]. Corros. Sci., 2024, 226: 111650
|
[11] |
Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion [J]. Adv. Eng. Mater., 2015, 17: 400
|
[12] |
Liu M Y, Jiang J H, Gao Z, et al. Research progress of sacrificial Mg alloy anode for corrosion protection of marine equipment [J]. Mod. Transp. Metall. Mater., 2022, 2(1): 61
|
[12] |
刘明耀, 江静华, 高 正 等. 海洋装备防腐用镁合金牺牲阳极的研究进展 [J]. 现代交通与冶金材料, 2022, 2(1): 61
|
[13] |
Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
|
[13] |
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
|
[14] |
Peng C, Cao G W, Gu T Z, et al. The effect of dry/wet ratios on the corrosion process of the 6061 Al alloy in simulated Nansha marine atmosphere [J]. Corros. Sci., 2023, 210: 110840
|
[15] |
Xiao K, Dong C F, Li X G, et al. Atmospheric corrosion behavior of AZ91D magnesium alloys in initial stages [J]. Chin. J. Rare Met., 2006, 30: 595
|
[15] |
肖 葵, 董超芳, 李晓刚 等. AZ91D镁合金在大气环境中初期腐蚀行为的研究 [J]. 稀有金属, 2006, 30: 595
|
[16] |
Jönsson M, Persson D, Leygraf C. Atmospheric corrosion of field-exposed magnesium alloy AZ91D [J]. Corros. Sci., 2008, 50: 1406
|
[17] |
Guo C L, Zheng Q F, Zhao Y H, et al. Marine atmospheric corrosion behavior of AZ31 magnesium alloy [J]. Chin. J. Rare Met., 2013, 37: 21
|
[17] |
郭初蕾, 郑弃非, 赵月红 等. AZ31镁合金在海洋大气环境中的腐蚀行为 [J]. 稀有金属, 2013, 37: 21
|
[18] |
Jiang Q T. The research of EW75 magnesium alloy on the atmospheric corrosion behaviors [D]. Beijing: General Research Institute for Nonferrous Metals, 2014
|
[18] |
蒋全通. EW75镁合金大气腐蚀行为研究 [D]. 北京: 北京有色金属研究总院, 2014
|
[19] |
LeBozec N, Jönsson M, Thierry D. Atmospheric corrosion of magnesium alloys: influence of temperature, relative humidity, and chloride deposition [J]. Corrosion, 2004, 60: 356
|
[20] |
Esmaily M, Shahabi-Navid M, Svensson J E, et al. Influence of temperature on the atmospheric corrosion of the Mg-Al alloy AM50 [J]. Corros. Sci., 2015, 90: 420
|
[21] |
Wang Y, Liu Y H, Mu X L, et al. Effect of environmental factors on material transfer in thin liquid film during atmospheric corrosion process in marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1015
|
[21] |
汪 洋, 刘元海, 慕仙莲 等. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1015
|
[22] |
Lindström R, Johansson L G, Thompson G E, et al. Corrosion of magnesium in humid air [J]. Corros. Sci., 2004, 46: 1141
|
[23] |
Liu H G, Cao F Y, Song G L, et al. Review of the atmospheric corrosion of magnesium alloys [J]. J. Mater. Sci. Technol., 2019, 35: 2003
doi: 10.1016/j.jmst.2019.05.001
|
[24] |
Yang L J, Li Y F, Wei Y H, et al. Atmospheric corrosion of field-exposed AZ91D Mg alloys in a polluted environment [J]. Corros. Sci., 2010, 52: 2188
|
[25] |
Zhao C, Cao F Y, Song G L. Corrosivity of haze constituents to pure Mg [J]. J. Magnesium Alloys, 2020, 8: 150
|
[26] |
Yu R H, Cao F Y, Zhao C, et al. The marine atmospheric corrosion of pure Mg and Mg alloys in field exposure and lab simulation [J]. Corros. Eng. Sci. Technol., 2020, 55: 609
|
[27] |
Jiang Q T, Lu D Z, Wang N, et al. The corrosion behavior of Mg-Nd binary alloys in the harsh marine environment [J]. J. Magnesium Alloys, 2021, 9: 292
|
[28] |
Cui Z Y, Li X G, Xiao K, et al. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment [J]. Corros. Sci., 2013, 76: 243
|
[29] |
Merino M C, Pardo A, Arrabal R, et al. Influence of chloride ion concentration and temperature on the corrosion of Mg-Al alloys in salt fog [J]. Corros. Sci., 2010, 52: 1696
|
[30] |
Jönsson M, Persson D, Thierry D. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D [J]. Corros. Sci., 2007, 49: 1540
|
[31] |
Wu J J, Xu M, Wang P, et al. Impact of nitrate addition on EH40 steel corrosion in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 765
|
[31] |
吴佳佳, 徐 鸣, 王 鹏 等. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 765
doi: 10.11902/1005.4537.2023.150
|
[32] |
Xu K, Wang B J, Sun J. Research progress on the influence of anions in typical corrosive media on corrosion behavior of magnesium alloys [J]. Mater. Prot., 2022, 55(12): 166
|
[32] |
许 凯, 王保杰, 孙 杰. 典型腐蚀介质中阴离子对镁合金腐蚀行为影响的研究进展 [J]. 材料保护, 2022, 55(12): 166
|
[33] |
Liu W D, Cao F H, Chen A, et al. Effect of chloride ion concentration on electrochemical behavior and corrosion product of AM60 magnesium alloy in aqueous solutions [J]. Corrosion, 2012, 68: 045001
|
[34] |
Yang L H, Lin C G, Gao H P, et al. Corrosion behaviour of AZ63 magnesium alloy in natural seawater and 3.5wt.%NaCl aqueous solution [J]. Int. J. Electrochem. Sci., 2018, 13: 8084
|
[35] |
Jaume J, Marques M J F, Délia M L, et al. Surface modification of 5083 aluminum-magnesium induced by marine microorganisms [J]. Corros. Sci., 2022, 194: 109934
|
[36] |
Marques M J F, Benedetti A, Castelli F, et al. Influence of natural seawater variables on the corrosion behaviour of aluminium-magnesium alloy [J]. Bioelectrochemistry, 2023, 149: 108321
|
[37] |
Lin M X, Zhang J, Jiang Q T, et al. Effect of chlorella vulgaris on corrosion behavior of Mg-3Y-1.5Nd alloy in natural seawater [J]. J. Mater. Eng., 2020, 48(1): 98
|
[37] |
林梦晓, 张 杰, 蒋全通 等. 海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响 [J]. 材料工程, 2020, 48(1): 98
doi: 10.11868/j.issn.1001-4381.2018.000157
|
[38] |
Gu Y X, Jiang J H, Xie Q Y, et al. Advances in magnesium alloys as anodes of seawater battery [J]. Surf. Technol., 2022, 51(4): 1
|
[38] |
谷亚啸, 江静华, 谢秋媛 等. 海水电池用镁合金阳极的研究进展 [J]. 表面技术, 2022, 51(4): 1
|
[39] |
Deng M, Wang L Q, Höche D, et al. Clarifying the decisive factors for utilization efficiency of Mg anodes for primary aqueous batteries [J]. J. Power Sources, 2019, 441: 227201
|
[40] |
Zhang J, Lan X, Wang J, et al. Current status and prospect of influence of SRB on the corrosion of magnesium anodes of buried pipeline in mudflat environment [J]. Equip. Environ. Eng., 2021, 18(12): 51
|
[40] |
张 杰, 兰 啸, 王 佳 等. 滩涂环境SRB对涉海管线镁阳极腐蚀影响现状与展望 [J]. 装备环境工程, 2021, 18(12): 51
|
[41] |
Li Y T. Corrosion behaviour of steel in beach soil along Bohai Bay [J]. Corros. Eng. Sci. Technol., 2009, 44: 91
|
[42] |
Guan F, Duan J Z, Zhai X F, et al. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36: 55
doi: 10.1016/j.jmst.2019.07.009
|
[43] |
Zhou E Z, Wang J J, Moradi M, et al. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing [J]. J. Mater. Sci. Technol., 2020, 48: 72
doi: 10.1016/j.jmst.2020.01.055
|
[44] |
Liu H W, Cheng Y F. Microbial corrosion of initial perforation on abandoned pipelines in wet soil containing sulfate-reducing bacteria [J]. Colloids Surf., 2020, 190B: 110899
|
[45] |
Sun D X, Wu M, Xie F, et al. Hydrogen permeation behavior of X70 pipeline steel simultaneously affected by tensile stress and sulfate-reducing bacteria [J]. Int. J. Hydrog. Energy, 2019, 44: 24065
|
[46] |
Wang D, Xie F, Wu M, et al. The effect of sulfate-reducing bacteria on hydrogen permeation of X80 steel under cathodic protection potential [J]. Int. J. Hydrog. Energy, 2017, 42: 27206
|
[47] |
Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
doi: 10.1016/j.jmst.2018.05.020
|
[48] |
Li Y C, Feng S Q, Liu H M, et al. Bacterial distribution in SRB biofilm affects MIC pitting of carbon steel studied using FIB-SEM [J]. Corros. Sci., 2020, 167: 108512
|
[49] |
Zhang T S, Wang Z Y, Qiu Y B, et al. “Electrons-siphoning” of sulfate reducing bacteria biofilm induced sharp depletion of Al-Zn-In-Mg-Si sacrificial anode in the galvanic corrosion coupled with carbon steel [J]. Corros. Sci., 2023, 216: 111103
|
[50] |
Purwasena I A, Astuti D I, Ardini Fauziyyah N, et al. Inhibition of microbial influenced corrosion on carbon steel ST37 using biosurfactant produced by Bacillus sp [J]. Mater. Res. Express, 2019, 6: 115405
|
[51] |
Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
|
[52] |
Fang S J, Liu Y H, Wang Q, et al. Influence of SRB on corrosion of AZ91 magnesium alloy in solution containing chlorine ions [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2008, 36(7): 92
|
[52] |
方世杰, 刘耀辉, 王 强 等. SRB对AZ91镁合金在含氯离子溶液中腐蚀的影响 [J]. 华南理工大学学报(自然科学版), 2008, 36(7): 92
|
[53] |
Liu Y H, Wang Q, Song Y L, et al. A study on the corrosion behavior of Ce-modified cast AZ91 magnesium alloy in the presence of sulfate-reducing bacteria [J]. J. Alloy. Compd., 2009, 473: 550
|
[54] |
Sun D X, Wu M, Xie F. Effect of sulfate-reducing bacteria and cathodic potential on stress corrosion cracking of X70 steel in sea-mud simulated solution [J]. Mater. Sci. Eng., 2018, 721A: 135
|
[55] |
Davoodi A, Pakshir M, Babaiee M, et al. A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media [J]. Corros. Sci., 2011, 53: 399
|
[56] |
Ma H Y, Cheng X L, Li G Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions [J]. Corros. Sci., 2000, 42: 1669
|
[57] |
Zhang X, Zhang K. Research progress on corrosion behavior and mechanism of magnesium alloy [J]. Corros. Sci. Prot. Technol., 2015, 27: 78
|
[57] |
张 新, 张 奎. 镁合金腐蚀行为及机理研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 78
|
[58] |
Meng W Q. study on composition optimization, static and dynamic mechanical properties and corrosion behavior of AM series magnesium alloys [D]. Chongqing: Chongqing University, 2018
|
[58] |
蒙万秋. AM系镁合金成分优化、静动态力学性能及腐蚀行为研究 [D]. 重庆: 重庆大学, 2018
|
[59] |
Bahmani A, Arthanari S, Shin S K. Formulation of corrosion rate of magnesium alloys using microstructural parameters [J]. J. Magnesium Alloys, 2020, 8: 134
|
[60] |
Wang B J, Luan J Y, Wang S D, et al. Research progress on stress corrosion cracking behavior of magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 89
|
[60] |
王保杰, 栾吉瑜, 王士栋 等. 镁合金应力腐蚀开裂行为研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 89
doi: 10.11902/1005.4537.2018.186
|
[61] |
Jiang Q T, Lv X Z, Lu D Z, et al. The corrosion behavior and mechanical property of the Mg-7Y-xNd ternary alloys [J]. J. Magnesium Alloys, 2018, 6: 346
|
[62] |
Liu Y X, Chen L P, Zhou Q, et al. Effects of cold spraying and cold spraying-anodizing treatment on the corrosion resistance of WE43 magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2023, 43: 1561
|
[62] |
刘曜熙, 陈乐平, 周 全 等. 冷喷涂及阳极氧化复合处理对WE43镁合金耐蚀性能的影响 [J]. 特种铸造及有色合金, 2023, 43: 1561
|
[63] |
Shi H, Sun Q, Jiang Q T, et al. Effect of ytterbium oxide on the structure and corrosion resistance of micro-arc oxide coatings of Mg-Nd binary alloys in the natural seawater [J]. Corros. Sci., 2023, 221: 111332
|
[64] |
Kousis C, Keil P, Hamilton N M, et al. The kinetics and mechanism of filiform corrosion affecting organic coated Mg alloy surfaces [J]. Corros. Sci., 2022, 206: 110477
|
[65] |
Wu P P, Song G L, Zhu Y X, et al. The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles [J]. Corros. Sci., 2021, 184: 109410
|
[66] |
Jiang Q T, Lu D Z, Cheng L R, et al. The corrosion characteristic and mechanism of Mg-5Y-1.5Nd-xZn-0.5Zr (x =0, 2, 4, 6wt%) alloys in marine atmospheric environment [J]. J. Magnesium Alloys, 2024, 12: 139
|
[67] |
Chen Y W, Zhou J, Liu Y, et al. Research progress in corrosion mechanism and regulation of magnesium alloys [J]. Chin. J. Nonferrous Met., 2023, 33: 3152
|
[67] |
陈雅薇, 周 济, 刘 勇 等. 镁合金腐蚀机制与调控研究进展 [J]. 中国有色金属学报, 2023, 33: 3152
|
[68] |
Li Y G, Wei Y H, Hou L F, et al. Atmospheric corrosion of AM60 Mg alloys in an industrial city environment [J]. Corros. Sci., 2013, 69: 67
|
[69] |
Yang Y, Deng Y C, Zhang R F, et al. Influence of β-Mg17Al12 and Al-Mn intermetallic compounds on the corrosion behaviour of cast and solution treated Mg-Al-Zn-Mn alloys [J]. Corros. Sci., 2023, 222: 111363
|
[70] |
Zheng T X, Hu Y B, Yang S W. Effect of grain size on the electrochemical behavior of pure magnesium anode [J]. J. Magnesium Alloys, 2017, 5: 404
|
[71] |
Zhu Q C, Li Y X, Cao F Y, et al. Towards development of a high-strength stainless Mg alloy with Al-assisted growth of passive film [J]. Nat. Commun., 2022, 13: 5838
doi: 10.1038/s41467-022-33480-w
pmid: 36192418
|
[72] |
Xie Y, Liu T, Wang W, et al. Effect of microstructure on corrosion resistance of a high-strength ultralightweight Mg-Li alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 255
|
[72] |
谢 云, 刘 婷, 王 雯 等. 微观组织对一种超轻高强镁锂合金耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 255
|
[73] |
Fang A C, Xie G S. Application of micro-arc oxidation technology in aluminum, magnesium and its alloys against corrosion in the marine environment [J]. Surf. Technol., 2012, 41(1): 54
|
[73] |
房爱存, 解光胜. 微弧氧化技术在铝、镁及其合金海洋环境防腐蚀中的应用 [J]. 表面技术, 2012, 41(1): 54
|
[74] |
Tian G Y, Yan C M, Yang Z H, et al. Research progress on corrosion and protection of corrosion-resistant Mg-Li alloys [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1255
|
[74] |
田光元, 严程铭, 杨智皓 等. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1255
doi: 10.11902/1005.4537.2022.300
|
[75] |
Wang D, Sun S B, Sun Z H, et al. Corrosion resistance of MAO/GO/SA compound coatings on Mg alloy under different processes [J]. Spec. Cast. Nonferrous Alloys, 2023, 43: 1501
|
[75] |
王 东, 孙世博, 孙志浩 等. 不同工艺下镁合金MAO/GO/SA复合涂层的耐蚀性 [J]. 特种铸造及有色合金, 2023, 43: 1501
|
[76] |
Liu C, Jiang Q T, Sun Q, et al. The hydrothermal performance and corrosion resistance of MgO@Nb2O5 composite coatings on Mg-7Y alloy in natural seawater [J]. J. Mater. Res. Technol., 2023, 26: 9203
|
[77] |
He M G, Yang L Q, He Q Y, et al. Comparative study on the corrosion resistance of Al, AlTiSi and AlTiSiN coated Mg-Gd-Y magnesium alloy [J]. Mater. Lett., 2024, 359: 135945
|
[78] |
Ren D T, Wang W Q, Zhang X G, et al. Study on microstructures and corrosion resistance of SPS Al-Al2O3, composite coatings on magnesium alloy substrate [J]. Mater. Rep., 2024: 38(16): 22120140
|
[78] |
任东亭, 王文权, 张新戈 等. 镁合金基体等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024: 38(16): 22120140
|
[79] |
Wang H, Liu Y Y. Research progress in the preparation of anti-corrosion superhydrophobic coatings on magnesium alloys [J]. Surf. Technol., 2023, 52(11): 1
|
[79] |
王 华, 刘艳艳. 镁合金表面防腐蚀超疏水涂层制备研究进展 [J]. 表面技术, 2023, 52(11): 1
|
[80] |
Huang Z F, Yong Q W, Fang R, et al. Superhydrophobic and corrosion-resistant nickel-based composite coating on magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 755
|
[80] |
黄志凤, 雍奇文, 房 蕊 等. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层 [J]. 中国腐蚀与防护学报, 2023, 43: 755
doi: 10.11902/1005.4537.2023.143
|
[81] |
Liu J Y, Zhang Z Y, Wang D, et al. Corrosion resistance behavior of different MOF superhydrophobic coatings on magnesium alloy surface [J]. J. Mater. Eng., 2024, 52(4): 138
doi: 10.11868/j.issn.1001-4381.2022.000602
|
[81] |
刘金玉, 张志远, 王 东 等. 镁合金表面不同MOF超疏水涂层的耐蚀行为 [J]. 材料工程, 2024, 52(4): 138
doi: 10.11868/j.issn.1001-4381.2022.000602
|
[82] |
Liu B S, Gao A, Zhang Z C, et al. Anticorrosion and discharge performance of calcium and neodymium co-doped AZ61 alloy anodes for Mg-air batteries [J]. J. Mater. Sci. Technol., 2024, 193: 132
doi: 10.1016/j.jmst.2024.01.024
|
[83] |
Huang D Y, Bu T, Song G L, et al. High anodic-efficiency and energy-density magnesium-air battery with modified AZ31 anode [J]. J. Alloy. Compd., 2023, 960: 170592
|
[84] |
Wang N G, Wang R C, Feng Y, et al. Discharge and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery [J]. Corros. Sci., 2016, 112: 13
|
[85] |
Abedini A, Valmoozi A A E, Afghahi S S S, et al. Corrosion and discharge performance of AZ61, AZ63, AZ101 and AZ103 alloys as anode in magnesium-dissolved oxygen seawater long term batteries[J]. Journal of Power Sources, 2023, 570: 233004
|
[86] |
Wang N G, Wang R C, Peng C Q, et al. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery [J]. Electrochim. Acta, 2014, 149: 193
|
[87] |
Li J R, Zhang B B, Wei Q Y, et al. Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5wt.%NaCl solution [J]. Electrochim. Acta, 2017, 238: 156
|
[88] |
Song D D, Wan H X, Xu D, et al. Influence of rolling on corrosion behavior of ZM5 Mg-Alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 213
|
[88] |
宋东东, 万红霞, 徐 栋 等. 轧制对ZM5镁合金腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 213
|
[89] |
Xu H, Zhang X, Jiang S S, et al. Influence of aging treatment on corrosion behavior and mechanism of Mg-Y alloys [J]. J. Cent. South Univ., 2018, 25: 987
|
[90] |
Feng Y, Wang R C, Peng C Q. Influence of aging treatments on microstructure and electrochemical properties in Mg-8.8Hg-8Ga (wt%) alloy [J]. Intermetallics, 2013, 33: 120
|
[91] |
Wang N G, Li W P, Huang Y X, et al. Wrought Mg-Al-Pb-RE alloy strips as the anodes for Mg-air batteries [J]. J. Power Sources, 2019, 436: 226855
|
[92] |
Xiao B, Song G L, Zheng D J, et al. A corrosion resistant die-cast Mg-9Al-1Zn anode with superior discharge performance for Mg-air battery [J]. Mater. Des., 2020, 194: 108931
|
[93] |
Liu H, Liu W, Wei J, et al. Effect of stray current on corrosion behavior of Mg alloy sacrificial anode in buried pipeline [J]. Eng. Failure Anal., 2023, 143: 106852
|
[94] |
Yamauchi K, Asakura S. Galvanic dissolution behavior of magnesium-1 mass%manganese-0.5 mass%calcium alloy anode for cathodic protection in fresh water [J]. Mater. Trans., 2003, 44: 1046
|
[95] |
Kim J G, Joo J H, Koo S J. Development of high-driving potential and high-efficiency Mg-based sacrificial anodes for cathodic protection [J]. J. Mater. Sci. Lett., 2000, 19: 477
|
[96] |
Hou J C, Guan S K, Ren C X, et al. effect of small addition of strontium on microstructure and electrochemical performance of mg-mn sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 166
|
[96] |
侯军才, 关绍康, 任晨星 等. 微量锶对镁锰牺牲阳极显微组织和电化学性能的影响 [J]. 中国腐蚀与防护学报, 2006, 26: 166
|
[97] |
Sadawy M, Saad S, Abdel-Karim R. Effect of Zn/Mg ratio on cathodic protection of carbon steel using Al-Zn-Mg sacrificial anodes [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2067
|
[98] |
Wen J B, He J G, Lu X W. Influence of silicon on the corrosion behaviour of Al-Zn-In-Mg-Ti sacrificial anode [J]. Corros. Sci., 2011, 53: 3861
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|