|
|
临氢环境下聚乙烯管材力学性能研究进展 |
杨鹏1, 李敬法1( ), 郑度奎2, 宇波2, 赵杰1, 李建立1, 段鹏飞3, 李璐伶3 |
1.北京石油化工学院机械工程学院 北京 102617 2.长江大学石油工程学院 武汉 430100 3.深圳市燃气集团股份有限公司 深圳 518049 |
|
Research Progress on Mechanical Properties of Polyethylene Pipes in Hydrogen Containing Environment |
YANG Peng1, LI Jingfa1( ), ZHENG Dukui2, YU Bo2, ZHAO Jie1, LI Jianli1, DUAN Pengfei3, LI Luling3 |
1.School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China 2.School of Petroleum Engineering, Yangtze University, Wuhan 430100, China 3.Shenzhen Gas Corporation Ltd., Shenzhen 518049, China |
引用本文:
杨鹏, 李敬法, 郑度奎, 宇波, 赵杰, 李建立, 段鹏飞, 李璐伶. 临氢环境下聚乙烯管材力学性能研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 319-326.
Peng YANG,
Jingfa LI,
Dukui ZHENG,
Bo YU,
Jie ZHAO,
Jianli LI,
Pengfei DUAN,
Luling LI.
Research Progress on Mechanical Properties of Polyethylene Pipes in Hydrogen Containing Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 319-326.
1 |
Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
|
1 |
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
|
2 |
Zhang J X, Wang C L, Liu C W, et al. Research progress on hydrogen embrittlement behavior of pipeline steel in the environment of hydrogen-blended natural gas [J]. Surf. Technol., 2022, 51(10): 76
|
2 |
张家轩, 王财林, 刘翠伟 等. 掺氢天然气环境下管道钢氢脆行为研究进展 [J]. 表面技术, 2022, 51(10): 76
|
3 |
Wang X Y, Wu J X, Wang D Q, et al. Study on key mechanical indexes to assess the compatibility of pipeline steel with gaseous hydrogen [J]. Mech. Eng., 2023, 45: 286
|
3 |
王修云, 吴进贤, 王德强 等. 含氢气体环境中管线钢材料氢相容性评价的力学性能关键指标研究 [J]. 力学与实践, 2023, 45: 286
|
4 |
Zheng D K, Li J F, Liu B, et al. Molecular dynamics investigations into the hydrogen permeation mechanism of polyethylene pipeline material [J]. J. Mol. Liq., 2022, 368: 120773
|
5 |
Zuo X F. Study on creep rupture behavior of full-notch of polyethylene gas pipeline [D]. Changsha: Changsha University of Science & Technology, 2019
|
5 |
左晓锋. 聚乙烯燃气管道的全切口蠕变断裂行为研究 [D]. 长沙: 长沙理工大学, 2019
|
6 |
Lin D, Cen K, Pu C X, et al. Study on evaluation indicators of aging performance of gas polyethylene pipe in service [J]. Gas Heat, 2019, 39(5): A28
|
6 |
林 东, 岑 康, 蒲昌兴 等. 在役燃气聚乙烯管材老化性能评价指标研究 [J]. 煤气与热力, 2019, 39(5): A28
|
7 |
Guo S W, Wu H Z, Dong S H, et al. Simulation of hydrogen distribution in pipeline with double corrosion defects [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 335
|
7 |
郭诗雯, 吴浩志, 董绍华 等. 含双腐蚀缺陷管道的氢浓度分布模拟 [J]. 中国腐蚀与防护学报, 2024, 44: 335
doi: 10.11902/1005.4537.2023.333
|
8 |
Li Q L, Zhang X W, Pei X J, et al. Factors affecting tensile property of HDPE [J]. Refin. Chem. Ind., 2012, 23(1): 16
|
8 |
李清玲, 张晓文, 裴鑫杰 等. 高密度聚乙烯的拉伸性能影响因素分析 [J]. 炼油与化工, 2012, 23(1): 16
|
9 |
Castagnet S, Grandidier J C, Comyn M, et al. Mechanical testing of polymers in pressurized hydrogen: tension, creep and ductile fracture [J]. Exp. Mech., 2012, 52: 229
|
10 |
Castagnet S, Grandidier J C, Comyn M, et al. Effect of long-term hydrogen exposure on the mechanical properties of polymers used for pipes and tested in pressurized hydrogen [J]. Int. J. Press. Vessel. Pip., 2012, 89: 203
|
11 |
Klopffer M H, Berne P, Weber M, et al. New materials for hydrogen distribution networks: materials development & technico-economic benchmark [J]. Defect Diffus. Forum, 2012, 323-325: 407
|
12 |
Alvine K J, Kafentzis T A, Pitman S G, et al. An in situ tensile test apparatus for polymers in high pressure hydrogen [J]. Rev. Sci. Instrum., 2014, 85: 105110
|
13 |
Menon N C, Kruizenga A M, Alvine K J, et al. Behaviour of polymers in high pressure environments as applicable to the hydrogen infrastructure [A]. ASME 2016 Pressure Vessels and Piping Conference [C]. Vancouver, 2016: V06 BT 06A037
|
14 |
Davis L A, Pampillo C A. Kinetics of deformation of PTFE at high pressure [J]. J. Appl. Phys., 1972, 43: 4285
|
15 |
Menon N C, Nissen A, Mills B E, et al. Performance of select thermoplastics and elastomers in high-pressure hydrogen cycling environments [R]. Livermore: Sandia National Laboratories, 2020
|
16 |
Li M D, Li Y, Yang B, et al. Characterization and constitutive modelling of nonlinear creep of PE100 grade gas pipe material [J]. China Plast., 2021, 35(11): 91
doi: 10.19491/j.issn.1001-9278.2021.11.014
|
16 |
李茂东, 李 彦, 杨 波 等. PE100燃气管材的非线性蠕变行为及其本构模型研究 [J]. 中国塑料, 2021, 35(11): 91
doi: 10.19491/j.issn.1001-9278.2021.11.014
|
17 |
Lai J, Bakker A. Analysis of the non-linear creep of high-density polyethylene [J]. Polymer, 1995, 36: 93
|
18 |
Luo W B, Yang T Q, An Q L. Time-temperature-stress equivalence and its application to nonlinear viscoelastic materials [J]. Acta Mech. Solida Sin., 2001, 14: 195
|
19 |
Hamouda H B H, Simoes-betbeder M, Grillon F, et al. Creep damage mechanisms in polyethylene gas pipes [J]. Polymer, 2001, 42: 5425
|
20 |
Klopffer M H, Berne P, Espuche É. Development of innovating materials for distributing mixtures of hydrogen and natural gas. Study of the barrier properties and durability of polymer pipes [J]. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv., 2015, 70: 305
|
21 |
Simmons K L, Fring L D, Kuang W B, et al. Gap analysis on the impacts of hydrogen addition to the north American natural gas infrastructure polyethylene pipelines [R]. Richland: Pacific Northwest National Laboratory, 2022
|
22 |
Krishnaswamy R K. Analysis of ductile and brittle failures from creep rupture testing of high-density polyethylene (HDPE) pipes [J]. Polymer, 2005, 46: 11664
|
23 |
Chan M K V, Williams J G. Plane strain fracture toughness testing of high density polyethylene [J]. Polym. Eng. Sci., 1981, 21: 1019
|
24 |
Guidara M A, Bouaziz M A, Schmitt C, et al. A semi-empirical model for structural integrity assessment of defected high density polyethylene pipes [J]. Eng. Fail. Anal., 2019, 100: 273
|
25 |
Graice I M, Younan M Y A, Naga S A R. Experimental investigation into the fracture toughness of polyethylene pipe material [J]. J. Pressure Vessel. Technol., 2005, 127: 70
|
26 |
Frank A, Pinter G, Lang R W. Prediction of the remaining lifetime of polyethylene pipes after up to 30 years in use [J]. Polym. Test., 2009, 28: 737
|
27 |
Hoàng E M, Lowe D. Lifetime prediction of a blue PE100 water pipe [J]. Polym. Degrad. Stabil., 2008, 93: 1496
|
28 |
International Organization for Standardization. Polyethylene (PE) materials for piping systems—determination of resistance to slow crack growth under cyclic loading—cracked round bar test method [S]. Geneva: ISO, 2015
|
29 |
Frank A, Berger I J, Arbeiter F, et al. Characterization of crack Initiation and slow crack growth resistance of PE 100 and PE 100-RC pipe grades with cyclic cracked round bar (CRB) tests [A]. Proceedings of the 17th Plastic Pipes Conference [C]. Chicago, 2014: 22
|
30 |
Redhead A, Frank A, Pinter G. Investigation of slow crack growth initiation in polyethylene pipe grades with accelerated cyclic tests [J]. Eng. Fract. Mech., 2013, 101: 2
|
31 |
Zhao Y J, Choi B H, Chudnovsky A. Characterization of the fatigue crack behavior of pipe grade polyethylene using circular notched specimens [J]. Int. J. Fatigue, 2013, 51: 26
|
32 |
Nezbedová E, Hutař P, Zouhar M, et al. The applicability of the Pennsylvania notch test for a new generation of PE pipe grades [J]. Polym. Test., 2013, 32: 106
|
33 |
Frank A, Pinter G. Evaluation of the applicability of the cracked round bar test as standardized PE-pipe ranking tool [J]. Polym. Test., 2014, 33: 161
|
34 |
Benoit G, Boyer S A E, Castagnet S, et al. Mechanical testing in pressurized hydrogen and carbon dioxide [A]. The 10th BSSM International Conference on Advances in Experimental Mechanics [C]. Edinburg, 2015
|
35 |
Byrne N, Ghanei S, Espinosa S M, et al. Influence of hydrogen on vintage polyethylene pipes: slow crack growth performance and material properties [J]. Int. J. Energy. Res., 2023, 2023: 6056999
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|