Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 319-326     CSTR: 32134.14.1005.4537.2024.229      DOI: 10.11902/1005.4537.2024.229
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
临氢环境下聚乙烯管材力学性能研究进展
杨鹏1, 李敬法1(), 郑度奎2, 宇波2, 赵杰1, 李建立1, 段鹏飞3, 李璐伶3
1.北京石油化工学院机械工程学院 北京 102617
2.长江大学石油工程学院 武汉 430100
3.深圳市燃气集团股份有限公司 深圳 518049
Research Progress on Mechanical Properties of Polyethylene Pipes in Hydrogen Containing Environment
YANG Peng1, LI Jingfa1(), ZHENG Dukui2, YU Bo2, ZHAO Jie1, LI Jianli1, DUAN Pengfei3, LI Luling3
1.School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2.School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
3.Shenzhen Gas Corporation Ltd., Shenzhen 518049, China
引用本文:

杨鹏, 李敬法, 郑度奎, 宇波, 赵杰, 李建立, 段鹏飞, 李璐伶. 临氢环境下聚乙烯管材力学性能研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 319-326.
Peng YANG, Jingfa LI, Dukui ZHENG, Bo YU, Jie ZHAO, Jianli LI, Pengfei DUAN, Luling LI. Research Progress on Mechanical Properties of Polyethylene Pipes in Hydrogen Containing Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 319-326.

全文: PDF(3026 KB)   HTML
摘要: 

氢能作为一种清洁能源备受关注,是目前能源领域的研究热点。通过现役城镇燃气聚乙烯管道将氢气输送至用户终端,是推动氢能大规模利用的一种重要手段。但聚乙烯管材长期暴露在氢环境中,其关键力学性能可能发生不可逆变化,影响输送安全。目前国内关于临氢环境下聚乙烯管材力学性能的研究尚处于起步阶段。本文综述了临氢环境下聚乙烯管材力学性能的相关研究进展,通过对聚乙烯管材在非氢气环境和临氢环境下拉伸、蠕变、断裂和疲劳试验研究的系统梳理,总结了氢气对聚乙烯管材力学性能的影响规律。结果表明,在较低的氢气压力下,聚乙烯管材力学性能受到的影响较小,可以忽略不计;只有在高压氢环境下,聚乙烯管材的力学性能才会发生显著变化,但该影响是来自于氢气的影响还是环境压力的作用目前尚不明确。本研究可为城镇聚乙烯管道输氢技术的发展提供参考和指导。

关键词 氢环境聚乙烯管道拉伸蠕变断裂疲劳    
Abstract

Hydrogen energy, as a clean energy source, has attracted much attention and is now a major focus in the energy field. Transporting hydrogen to user terminals via the existing urban gas polyethylene pipelines is a key approach for promoting the large-scale utilization of hydrogen energy. However, prolonged exposure of polyethylene pipes to hydrogen environments may cause irreversible changes to their mechanical properties, potentially compromising the transportation safety. At present, research on the mechanical properties of polyethylene pipes in hydrogen environments is still in its early stages in China. This article reviews the recent progress in understanding the influence of hydrogen environments on the mechanical properties of polyethylene pipes. By systematically analyzing the results of tensile, creep, fracture, and fatigue tests of polyethylene pipes in environments with or without hydrogen respectively, the impact of hydrogen on the mechanical properties of polyethylene pipes is summarized and discussed. The findings indicate that lower hydrogen pressures presented negligible effect on mechanical properties of polyethylene pipes is, while significant changes occurred in high-pressure hydrogen environments, i.e. the mechanical properties of polyethylene pipes will undergo significant changes. However, it remains unclear whether these changes are driven by hydrogen itself or environmental pressure. This review provides valuable insights for advancing hydrogen transportation technologies using urban polyethylene pipelines.

Key wordshydrogen environment    polyethylene pipe    tensile    creep    fracture    fatigue
收稿日期: 2024-07-29      32134.14.1005.4537.2024.229
ZTFLH:  TQ317.3  
基金资助:国家重点研发计划(2021YFB4001605);国家市场监督管理总局科技技术项目(2023MK123);福建省“揭榜挂帅”引导性项目(2023H0054)
通讯作者: 李敬法,E-mail:lijingfa@bipt.edu.cn,研究方向为氢能管道输送技术
Corresponding author: LI Jingfa, E-mail: lijingfa@bipt.edu.cn
作者简介: 杨 鹏,男,2001年生,硕士生
图1  拉伸屈服应力与环境温度的关系[8]
图2  屈服应力和拉伸断裂标称应变与拉伸速度的关系[8]
图3  厚HDPE拉伸试样在28 MPa高压氢环境中暴露后的应力/应变曲线[12]
图4  HDPE在空气中和在35 MPa氢气中暴露20 h后的应力/应变曲线以及在空气中、28 MPa氢气、31 MPa氢气和35 MPa氢气的其他屈服点数据[12]
图5  不同应力作用下的蠕变柔量曲线[16]
图6  PE100双面缺口拉伸试样载荷-位移曲线图[9]
图7  HYOCOMAT试验台[34]
1 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
1 姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
2 Zhang J X, Wang C L, Liu C W, et al. Research progress on hydrogen embrittlement behavior of pipeline steel in the environment of hydrogen-blended natural gas [J]. Surf. Technol., 2022, 51(10): 76
2 张家轩, 王财林, 刘翠伟 等. 掺氢天然气环境下管道钢氢脆行为研究进展 [J]. 表面技术, 2022, 51(10): 76
3 Wang X Y, Wu J X, Wang D Q, et al. Study on key mechanical indexes to assess the compatibility of pipeline steel with gaseous hydrogen [J]. Mech. Eng., 2023, 45: 286
3 王修云, 吴进贤, 王德强 等. 含氢气体环境中管线钢材料氢相容性评价的力学性能关键指标研究 [J]. 力学与实践, 2023, 45: 286
4 Zheng D K, Li J F, Liu B, et al. Molecular dynamics investigations into the hydrogen permeation mechanism of polyethylene pipeline material [J]. J. Mol. Liq., 2022, 368: 120773
5 Zuo X F. Study on creep rupture behavior of full-notch of polyethylene gas pipeline [D]. Changsha: Changsha University of Science & Technology, 2019
5 左晓锋. 聚乙烯燃气管道的全切口蠕变断裂行为研究 [D]. 长沙: 长沙理工大学, 2019
6 Lin D, Cen K, Pu C X, et al. Study on evaluation indicators of aging performance of gas polyethylene pipe in service [J]. Gas Heat, 2019, 39(5): A28
6 林 东, 岑 康, 蒲昌兴 等. 在役燃气聚乙烯管材老化性能评价指标研究 [J]. 煤气与热力, 2019, 39(5): A28
7 Guo S W, Wu H Z, Dong S H, et al. Simulation of hydrogen distribution in pipeline with double corrosion defects [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 335
7 郭诗雯, 吴浩志, 董绍华 等. 含双腐蚀缺陷管道的氢浓度分布模拟 [J]. 中国腐蚀与防护学报, 2024, 44: 335
doi: 10.11902/1005.4537.2023.333
8 Li Q L, Zhang X W, Pei X J, et al. Factors affecting tensile property of HDPE [J]. Refin. Chem. Ind., 2012, 23(1): 16
8 李清玲, 张晓文, 裴鑫杰 等. 高密度聚乙烯的拉伸性能影响因素分析 [J]. 炼油与化工, 2012, 23(1): 16
9 Castagnet S, Grandidier J C, Comyn M, et al. Mechanical testing of polymers in pressurized hydrogen: tension, creep and ductile fracture [J]. Exp. Mech., 2012, 52: 229
10 Castagnet S, Grandidier J C, Comyn M, et al. Effect of long-term hydrogen exposure on the mechanical properties of polymers used for pipes and tested in pressurized hydrogen [J]. Int. J. Press. Vessel. Pip., 2012, 89: 203
11 Klopffer M H, Berne P, Weber M, et al. New materials for hydrogen distribution networks: materials development & technico-economic benchmark [J]. Defect Diffus. Forum, 2012, 323-325: 407
12 Alvine K J, Kafentzis T A, Pitman S G, et al. An in situ tensile test apparatus for polymers in high pressure hydrogen [J]. Rev. Sci. Instrum., 2014, 85: 105110
13 Menon N C, Kruizenga A M, Alvine K J, et al. Behaviour of polymers in high pressure environments as applicable to the hydrogen infrastructure [A]. ASME 2016 Pressure Vessels and Piping Conference [C]. Vancouver, 2016: V06 BT 06A037
14 Davis L A, Pampillo C A. Kinetics of deformation of PTFE at high pressure [J]. J. Appl. Phys., 1972, 43: 4285
15 Menon N C, Nissen A, Mills B E, et al. Performance of select thermoplastics and elastomers in high-pressure hydrogen cycling environments [R]. Livermore: Sandia National Laboratories, 2020
16 Li M D, Li Y, Yang B, et al. Characterization and constitutive modelling of nonlinear creep of PE100 grade gas pipe material [J]. China Plast., 2021, 35(11): 91
doi: 10.19491/j.issn.1001-9278.2021.11.014
16 李茂东, 李 彦, 杨 波 等. PE100燃气管材的非线性蠕变行为及其本构模型研究 [J]. 中国塑料, 2021, 35(11): 91
doi: 10.19491/j.issn.1001-9278.2021.11.014
17 Lai J, Bakker A. Analysis of the non-linear creep of high-density polyethylene [J]. Polymer, 1995, 36: 93
18 Luo W B, Yang T Q, An Q L. Time-temperature-stress equivalence and its application to nonlinear viscoelastic materials [J]. Acta Mech. Solida Sin., 2001, 14: 195
19 Hamouda H B H, Simoes-betbeder M, Grillon F, et al. Creep damage mechanisms in polyethylene gas pipes [J]. Polymer, 2001, 42: 5425
20 Klopffer M H, Berne P, Espuche É. Development of innovating materials for distributing mixtures of hydrogen and natural gas. Study of the barrier properties and durability of polymer pipes [J]. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv., 2015, 70: 305
21 Simmons K L, Fring L D, Kuang W B, et al. Gap analysis on the impacts of hydrogen addition to the north American natural gas infrastructure polyethylene pipelines [R]. Richland: Pacific Northwest National Laboratory, 2022
22 Krishnaswamy R K. Analysis of ductile and brittle failures from creep rupture testing of high-density polyethylene (HDPE) pipes [J]. Polymer, 2005, 46: 11664
23 Chan M K V, Williams J G. Plane strain fracture toughness testing of high density polyethylene [J]. Polym. Eng. Sci., 1981, 21: 1019
24 Guidara M A, Bouaziz M A, Schmitt C, et al. A semi-empirical model for structural integrity assessment of defected high density polyethylene pipes [J]. Eng. Fail. Anal., 2019, 100: 273
25 Graice I M, Younan M Y A, Naga S A R. Experimental investigation into the fracture toughness of polyethylene pipe material [J]. J. Pressure Vessel. Technol., 2005, 127: 70
26 Frank A, Pinter G, Lang R W. Prediction of the remaining lifetime of polyethylene pipes after up to 30 years in use [J]. Polym. Test., 2009, 28: 737
27 Hoàng E M, Lowe D. Lifetime prediction of a blue PE100 water pipe [J]. Polym. Degrad. Stabil., 2008, 93: 1496
28 International Organization for Standardization. Polyethylene (PE) materials for piping systems—determination of resistance to slow crack growth under cyclic loading—cracked round bar test method [S]. Geneva: ISO, 2015
29 Frank A, Berger I J, Arbeiter F, et al. Characterization of crack Initiation and slow crack growth resistance of PE 100 and PE 100-RC pipe grades with cyclic cracked round bar (CRB) tests [A]. Proceedings of the 17th Plastic Pipes Conference [C]. Chicago, 2014: 22
30 Redhead A, Frank A, Pinter G. Investigation of slow crack growth initiation in polyethylene pipe grades with accelerated cyclic tests [J]. Eng. Fract. Mech., 2013, 101: 2
31 Zhao Y J, Choi B H, Chudnovsky A. Characterization of the fatigue crack behavior of pipe grade polyethylene using circular notched specimens [J]. Int. J. Fatigue, 2013, 51: 26
32 Nezbedová E, Hutař P, Zouhar M, et al. The applicability of the Pennsylvania notch test for a new generation of PE pipe grades [J]. Polym. Test., 2013, 32: 106
33 Frank A, Pinter G. Evaluation of the applicability of the cracked round bar test as standardized PE-pipe ranking tool [J]. Polym. Test., 2014, 33: 161
34 Benoit G, Boyer S A E, Castagnet S, et al. Mechanical testing in pressurized hydrogen and carbon dioxide [A]. The 10th BSSM International Conference on Advances in Experimental Mechanics [C]. Edinburg, 2015
35 Byrne N, Ghanei S, Espinosa S M, et al. Influence of hydrogen on vintage polyethylene pipes: slow crack growth performance and material properties [J]. Int. J. Energy. Res., 2023, 2023: 6056999
[1] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[2] 李新城, 李兆南, 王海锋, 徐云泽, 王明昱, 甄兴伟. DH36海洋工程钢焊接结构的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[3] 樊嘉骏, 董立谨, 马成, 张兹瑜, 明洪亮, 韦博鑫, 彭庆, 王勤英. 掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.
[4] 赵连红, 王英芹, 刘元海, 何卫平, 王浩伟. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
[5] 高俊宣, 曹晗, 匡文军, 郑全, 张鹏, 钟巍华. 奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 835-846.
[6] 翁硕, 孟超, 朱江峰, 王艾, 常馨, 康妘, 何小田, 赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[7] 何训, 吴梦雪, 尹力, 朱金. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[8] 陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[9] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[10] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[11] 刘冬, 刘静, 黄峰, 杜丽影. 海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
[12] 翁硕, 俞俊, 赵礼辉, 冯金芝, 郑松林. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
[13] 王歧山, 李鸿瑾, 何川, 郑平, 陈旭. 加载波形对X65钢腐蚀疲劳裂纹萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 227-234.
[14] 王永祥, 何柏林, 李力. 超声冲击改善P355NL1钢焊接接头腐蚀疲劳性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
[15] 刘冬, 刘静, 黄峰, 杜丽影, 彭文杰. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.