Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 137-147     CSTR: 32134.14.1005.4537.2024.297      DOI: 10.11902/1005.4537.2024.297
  研究报告 本期目录 | 过刊浏览 |
典型氟橡胶密封材料热空气老化试验研究
刘明(), 张连栋, 孙志华, 高蒙, 闫巍, 赵明亮
中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室 北京 100095
Assessment on Performance Decay Induced by Hot Air Aging for Typical Fluoroelastomer Sealing Materials
LIU Ming(), ZHANG Liandong, SUN Zhihua, GAO Meng, YAN Wei, ZHAO Mingliang
Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

刘明, 张连栋, 孙志华, 高蒙, 闫巍, 赵明亮. 典型氟橡胶密封材料热空气老化试验研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 137-147.
Ming LIU, Liandong ZHANG, Zhihua SUN, Meng GAO, Wei YAN, Mingliang ZHAO. Assessment on Performance Decay Induced by Hot Air Aging for Typical Fluoroelastomer Sealing Materials[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 137-147.

全文: PDF(24765 KB)   HTML
摘要: 

在160、180、200、220和240 ℃等5个温度点下开展典型氟橡胶FX-17的热空气老化试验,检测试验前后材料硬度、压缩永久变形率、拉伸强度、扯断伸长率等参数的变化,利用Fourier红外光谱等方法分析材料在老化过程中可能的分子结构变化,根据Arrhenius经验公式建立材料的性能衰减以及寿命退化模型。结果表明:典型氟橡胶FX-17经过热空气老化试验,Shore硬度最大变化幅度由初始值79 HA增加至92 HA,压缩永久变形率最大变化幅度由初始值增加至116%,拉伸强度最大变化幅度由初始值15 MPa下降至8 MPa,扯断伸长率最大变化幅度由初始值199%下降至125%;典型氟橡胶FX-17在热空气老化过程中主要发生了材料大分子的脱氢氟反应,进而引发自由基老化连锁反应;以压缩永久变形率作为典型氟橡胶FX-17密封失效的评价指标,其在200 ℃使用温度下寿命可达2700 h以上。

关键词 氟橡胶热空气老化密封失效脱氢氟反应寿命预测    
Abstract

The performance variation of a typical fluoroelastomer FX-17 due to hot air aging at 160, 180, 200, 220 and 240 oC, respectively was assessed, in terms of its hardness, compressive permanent deformation rate, tensile strength, elongation at break and other parameters. The corresponding change of its molecular structure were characterized by means of Fourier infrared spectroscopy and other methods. Based on Arrhenius empirical formula, the model of performance decay and life degradation of fluoroelastomer FX-17 was also established. The results show that after being hot air aged, the maximum change range of Shore hardness increased from the initial value of 79 HA to 92 HA, the maximum change range of compressive permanent deformation rate increased to 116% of the initial value, and the maximum change range of tensile strength decreased from the initial value of 15 MPa to 8 MPa. The maximum change range of elongation at break decreased from the initial value of 199% to 125%. In the process of aging in hot air, the dehydrofluorination of large molecules of FX-17 mainly occurs, which leads to a chain reaction of free radical aging. When the compression permanent deformation rate is used as the evaluation index of the sealing failure of typical fluoroelastomer FX-17, its service life can reach more than 2700 h at 200 oC.

Key wordsfluoroelastomer    air aging    seal failure    dehydrofluorination    life prediction
收稿日期: 2024-09-12      32134.14.1005.4537.2024.297
ZTFLH:  TQ330  
通讯作者: 刘 明,E-mail:luminousa@126.com,研究方向为环境适应性试验与评价
Corresponding author: LIU Ming, E-mail: luminousa@126.com
作者简介: 刘 明,男,1977年生,硕士,高级工程师
图1  实验用氟橡胶FX-17的基本化学结构
图2  两种工装实物图
图3  热空气老化试验后典型氟橡胶FX-17持久压缩试样外观变化
图4  热空气老化试验后典型氟橡胶FX-17持久拉伸试样外观变化
图5  典型氟橡胶FX-17在不同温度下热空气老化77 d后的表面形貌变化
图6  典型氟橡胶FX-17在240 ℃下热空气老化不同周期后的拉伸断口形貌
图7  热空气环境下氟橡胶不同温度下老化77 d后拉伸断口形貌
图8  热空气老化试验后典型氟橡胶FX-17老化邵尔硬度变化规律
图9  典型氟橡胶FX-17的压缩永久变形率随热空气老化时间的变化
图10  热空气老化试验后典型氟橡胶FX-17的拉伸强度变化规律
图11  热空气老化试验后典型氟橡胶FX-17的扯断伸长率变化规律
图12  热空气老化试验过程中典型氟橡胶FX-17的质量变化率
图13  热空气老化试验后典型氟橡胶FX-17的拉伸断口表面的元素含量
图14  热空气老化试验后典型氟橡胶FX-17 的热重分析曲线
图15  典型氟橡胶FX-17在210和270 ℃热空气下老化不同周期的红外光谱
Aging time τ / d433 K453 K473 K493 K513 K
10.90900.88490.85240.8206-
30.85640.82120.70560.74420.6727
50.83310.79170.7082--
70.81190.79240.72610.67290.5362
10----0.4345
140.81860.78340.63470.59240.3526
17----0.2959
210.80780.73020.61580.41910.2420
280.80590.69650.54820.36470.1066
350.79480.67290.56180.2956-
42--0.50270.2482-
490.77100.64640.39700.1490-
56--0.42630.1296-
63-0.61490.38240.1086-
770.74350.58680.35230.0250-
91--0.2760--
1050.66890.48210.2549--
1330.58420.3869---
表1  氟橡胶材料热空气老化-持久压缩试验老化性能指标数据
T / KBiKi / d-1σ2FrR test
5130.77430.05810.0007155.6-0.9843|r| ≥ r0.05 (5) = 0.754
4930.84870.03350.0013156.9-0.9696|r| ≥ r0.05 (10) = 0.576
4730.72120.00890.0023486.7-0.9869|r| ≥ r0.05 (13) = 0.514
4530.81390.00450.0009458.3-0.9882|r| ≥ r0.05 (11) = 0.553
4330.85140.00210.0008130.7-0.9638|r| ≥ r0.05 (10) = 0.576
表2  氟橡胶FX-17热空气老化-持久压缩试验lnP与τ1.01关系线性回归分析结果
图16  典型氟橡胶FX-17热空气老化-持久压缩试验lnK与1/T关系
1 Li D H, Liao M Y. Dehydrofluorination mechanism, structure and thermal stability of pure fluoroelastomer (poly(VDF-ter-HFP-ter-TFE) terpolymer) in alkaline environment [J]. J. Fluor. Chem., 2017, 201: 55
2 Wang Y, Bai Y P. The functionalization of fluoroelastomers: approaches, properties, and applications [J]. RSC Adv., 2016, 6: 53730
3 Yang F, Chen F B, Wang T, et al. Application of fluoroelastomer in aerospace area [J]. Chem. Adhes., 2019, 41: 62
3 杨 璠, 陈风波, 王 腾 等. 氟弹性体在航天航空领域的应用 [J]. 化学与黏合, 2019, 41: 62
4 Wang Q L, Pei J K, Li G, et al. Accelerated aging behaviors and mechanism of fluoroelastomer in lubricating oil medium [J]. Chin. J. Polym. Sci., 2020, 38: 853
5 Moore A L. Fluoroelastomers Handbook [M]. Norwich: William Andrew Publishing, 2005
6 Zhuo W Y, Wang Q L, Li G, et al. Detection of the destruction mechanism of perfluorinated elastomer (FFKM) network under thermo-oxidative aging conditions [J]. Chin. J. Polym. Sci., 2022, 40: 504
7 Han W C, Du H Y, Li S Z, et al. Mechanical properties and creep behavior of fluoroelastomer under hydrochloric acid environments [J]. Polym. Bull., 2020, 77: 5967
8 Lou W T, Zhang W F, Jin T Z, et al. Synergistic effects of multiple environmental factors on degradation of hydrogenated nitrile rubber seals [J]. Polymers, 2018, 10: 897
9 Liu X, Yang R. Research progress on aging of rubber sealing materials [J]. Mater. Mech. Eng., 2020, 44(9): 1
doi: 10.11973/jxgccl202009001
9 刘 璇, 杨 睿. 橡胶密封材料老化研究进展 [J]. 机械工程材料, 2020, 44(9): 1
10 Xia L C, Wang M, Wu H, et al. Effects of cure system and filler on chemical aging behavior of fluoroelastomer in simulated proton exchange membrane fuel cell environment [J]. Int. J. Hydrog. Energy, 2016, 41: 2887
11 Maiti M, Mitra S, Bhowmick A K. Effect of nanoclays on high and low temperature degradation of fluoroelastomers [J]. Polym. Degrad. Stab., 2008, 93: 188
12 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Rubber, vulcanized or thermoplastic—Determination of compression set—Part 1: At ambient or elevated temperatures [S]. Beijing: Standards Press of China, 2015
12 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶 压缩永久变形的测定 第1部分: 在常温及高温条件下 [S]. 北京: 中国标准出版社, 2015
13 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Rubber, vulcanized or thermoplastic - Determination of tensile stress-strain properties [S]. Beijing: Standards Press of China, 2009
13 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶 拉伸应力应变性能的测定 [S]. 北京: 中国标准出版社, 2009
14 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Rubber, vulcanized or thermoplastic—Accelerated ageing and heat resistance tests—Air-oven method [S]. Beijing: Standards Press of China, 2015
14 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶 热空气加速老化和耐热试验 [S]. 北京: 中国标准出版社, 2015
[1] 禹文娟, 王天丛, 赵东杨, 向雪云, 吴航, 王文. 封闭型耐蚀涂层的寿命预测模型研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[2] 林晓冬,彭群家,韩恩厚,柯伟. 核级不锈钢的热老化研究进展[J]. 中国腐蚀与防护学报, 2017, 37(2): 81-92.
[3] 张新生,曹乃宁,李亚云. 基于Gumbel极值I型分布埋地油气管道的剩余寿命预测[J]. 中国腐蚀与防护学报, 2016, 36(4): 370-374.
[4] 聂亚楠,沈浩,谷坤鹏,王成启. 玻璃钢复合材料耐海水腐蚀性能及抗Cl-渗透寿命预测[J]. 中国腐蚀与防护学报, 2016, 36(4): 357-362.
[5] 刘海霞,程学群,李晓刚,肖葵,董超芳. A1060纯Al的海洋大气环境腐蚀寿命预测模型研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 349-356.