Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1581-1588     CSTR: 32134.14.1005.4537.2024.047      DOI: 10.11902/1005.4537.2024.047
  研究报告 本期目录 | 过刊浏览 |
缝隙几何尺寸对闭塞区化学环境及腐蚀行为的影响
许志昱1, 胡骞1(), 黄峰1, 刘静1, 卢献忠2
1.武汉科技大学 省部共建耐火材料与冶金国家重点实验室;湖北省海洋工程材料及服役安全工程技术研究中心 武汉 430081
2.上海宝钢铸造有限公司 上海 201900
Effect of Crevice Geometry on Chemical Environment of Crevice Solution and Corrosion Behavior of 2205 Duplex Stainless Steel
XU Zhiyu1, HU Qian1(), HUANG Feng1, LIU Jing1, LU Xianzhong2
1. Hubei Engineering Technology Research Center of Marine Materials and Service Safety, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2. Shanghai Baosteel Casting Co., Ltd., Shanghai 201900, China
引用本文:

许志昱, 胡骞, 黄峰, 刘静, 卢献忠. 缝隙几何尺寸对闭塞区化学环境及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
Zhiyu XU, Qian HU, Feng HUANG, Jing LIU, Xianzhong LU. Effect of Crevice Geometry on Chemical Environment of Crevice Solution and Corrosion Behavior of 2205 Duplex Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1581-1588.

全文: PDF(10860 KB)   HTML
摘要: 

针对2205双相不锈钢在NaCl溶液中的缝隙腐蚀行为,设计缝内溶液化学环境测试及电化学实验装置,研究了缝隙腐蚀孕育期内Cl-和H+的富集规律,以及发展期缝内电极的阳极溶解行为,探讨了缝隙高度和闭塞区体积对闭塞区化学环境和腐蚀行为的影响。结果表明,随着缝隙高度或闭塞区体积减小,在缝隙腐蚀孕育期,Cl-和H+富集速率明显上升,H+浓度增加2个数量级。而在缝隙腐蚀发展期,OH-浓度显著增大;而缝内电位降越小,缝内电极的阳极溶解速率就越大。

关键词 缝隙腐蚀不锈钢闭塞区    
Abstract

The chemical composition of the solution inside the crevice influences the initiation and development of crevice corrosion significantly, and the crevice geometry is an important factor which determines the chemical composition of the solution inside the crevice. Herein, the crevice corrosion behavior of 2205 duplex stainless steel in a NaCl solution was investigated by means of a home-made set for measurement of the solution composition and electrochemistry inside the crevice. The variation of Cl- and H+ concentration during the crevice corrosion incubation period, and the anodic dissolution behavior of the electrode inside the crevice during the development period were characterized. Further, the effect of crevice gap size and solution volume of occluded area on the solution composition and corrosion behavior of occluded area were revealed. Results show that with the decrease of crevice gap or solution volume of occluded area, the enrichment rate of Cl- and H+ increase significantly and the concentration of H+ increases by 2 orders of magnitude. The anodic dissolution rate of electrode inside crevice increases with the decrease of the potential drop inside the crevice.

Key wordscrevice corrosion    stainless steel    occluded area
收稿日期: 2024-02-05      32134.14.1005.4537.2024.047
ZTFLH:  TG172  
基金资助:湖北省重大攻关项目(JD)(2023BAA003)
通讯作者: 胡骞,E-mail:huqian@wust.edu.cn,研究方向为金属材料腐蚀与防护
Corresponding author: HU Qian, E-mail: huqian@wust.edu.cn
作者简介: 许志昱,男,1999年生,硕士生
图1  2205 DSS微观组织形貌
图2  缝隙腐蚀实验装置和闭塞区尺寸调整示意图
图3  恒电位极化下不同缝隙溶液体积和缝隙高度时的电流时域图
图4  不同缝隙高度和闭塞区体积时Cl-浓度和pH随时间的变化
图5  不同缝隙高度和闭塞区体积时电极1的EIS谱(参比电极1)和等效电路

Time

h

Crevice geometry parameterFitting parameters of EIS
V / mLδ / μmRct / Ω·cm2Rs / Ω·cm2Rs' / Ω·cm2ΔRs / Ω·cm2
161.23003.87 × 1064.9248.5243.6
161.22001.91 × 1065.2260.5255.3
161.21001.27 × 1062.2600.9598.7
162.41004.64 × 1069.8425.5415.7
163.61008.30 × 1066.9459.0452.1
461.23006.37 × 1035.5323.1317.6
461.22009.79 × 1035.5261.8256.3
461.21001.23 × 1059.2575.9566.7
462.41001.83 × 1046.7474.0467.3
463.61001.20 × 1049.4456.7447.3
表1  不同缝隙高度和闭塞区体积时电极1的EIS谱拟合参数
图6  不同缝隙高度和闭塞区体积时,极化16和46 h的宏观腐蚀形貌
图7  极化46 h后不同缝隙高度下电极1的微观腐蚀形貌
图8  极化46 h后不同缝隙溶液体积下电极1的微观腐蚀形貌
Crevice geometry parameter

Average enrichment rate

ε / mol·L-1·h-1

Relative enrichment rate

ε' / %

V / mLδ / μmCl-H+Cl-H+
1.23006.39 × 10-39.55 × 10-6790.48
1.22006.92 × 10-38.13 × 10-5854.1
1.21008.14 × 10-32.00 × 10-3100100
2.41004.87 × 10-33.39 × 10-5601.7
3.61002.70 × 10-36.91 × 10-6330.35
表2  极化16 h闭塞区溶液Cl-和H+的富集速率
1 Xiao Y, Tang J L, Wang Y Y, et al. Corrosion behavior of 2205 duplex stainless steel in NaCl solutions containing sulfide ions [J]. Corros. Sci., 2022, 200: 110240
2 Zhou Y Q, Engelberg D L. Application of bipolar electrochemistry to assess the ambient temperature corrosion resistance of solution annealed type 2205 duplex stainless steel [J]. Mater. Chem. Phys., 2022, 275: 125183
3 Li M, Hu L Y, Hu K F, et al. Crevice corrosion behavior of 316L stainless steel in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1375
3 (李 敏, 胡凌越, 胡科峰 等. 316L不锈钢在深海环境中的缝隙腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1375)
4 Mu J, Li Y Z, Wang X. Crevice corrosion behavior of X70 steel in NaCl solution with different pH [J]. Corros. Sci., 2021, 182: 109310
5 Zhang Z, Fang T, Xia J Y, et al. Distribution of sulfate-reducing bacteria in the crevice and its effect on the initial corrosion behavior of 2205 stainless steel in artificial seawater [J]. Mater. Corros., 2022, 73: 367
doi: 10.1002/maco.202112759
6 Betova I, Bojinov M, Ikäläinen T, et al. Corrosion of alloy 690 in simulated steam generator crevices: effect of applied potential, pH and Pb addition [J]. J. Electrochem. Soc., 2022, 169: 021502
7 Kennell G F, Evitts R W, Heppner K L. A critical crevice solution and IR drop crevice corrosion model [J]. Corros. Sci., 2008, 50: 1716
8 Torres C, Johnsen R, Iannuzzi M. Crevice corrosion of solution annealed 25Cr duplex stainless steels: Effect of W on critical temperatures [J]. Corros. Sci., 2021, 178: 109053
9 Malki B, Berthomé G, Souier T, et al. A combined experimental and computational approach to study crevice corrosion of stainless steels [J]. J. Electrochem. Soc., 2021, 168: 101504
10 Lillard R S, Miller D M, Clemons C B, et al. Quantifying alloy 625 crevice corrosion using an image differencing technique: part II. a diffusive transport model of crevice cation concentration using surface current density [J]. J. Electrochem. Soc., 2020, 167: 141503
11 Chen D X, Han E H, Wu X Q. Effects of crevice geometry on corrosion behavior of 304 stainless steel during crevice corrosion in high temperature pure water [J]. Corros. Sci., 2016, 111: 518
12 White S P, Weir G J, Laycock N J. Calculating chemical concentrations during the initiation of crevice corrosion [J]. Corros. Sci., 2000, 42: 605
13 Hu Q, Zhang G A, Qiu Y B, et al. The crevice corrosion behaviour of stainless steel in sodium chloride solution [J]. Corros. Sci., 2011, 53: 4065
14 Song F M. Theoretical investigation into time and dimension scaling for crevice corrosion [J]. Corros. Sci., 2012, 57: 279
15 Pan C Q, Zhong Q D, Yang J, et al. Investigating crevice corrosion behavior of 6061 Al alloy using wire beam electrode [J]. J. Mater. Res. Technol., 2021, 14: 93
16 Luo B, Hu Q, Liu J, et al. Effect of crevice gap on crevice corrosion initiation and development of 2205 duplex stainless steel in NaCl solution [J]. J. Mater. Res. Technol., 2022, 21: 2584
17 Bai Y H, Zhang H, Zhu Z J, et al. Research progress of monitoring ion concentration variation of micro-areas in corrosion crevice interior [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 828
17 (白一涵, 张 航, 朱泽洁 等. 缝隙腐蚀内部微区离子浓度监测的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 828)
doi: 10.11902/1005.4537.2022.325
18 Bi X M, Cao C N. The influence of pH value and Cl- concentration on the electrochemical behavior of Fe corrosion process in acid solutions [J]. J. Chin. Soc. Corros. Prot., 1983, 3: 199
18 (毕新民, 曹楚南. pH值和氯离子浓度对铁在酸溶液中的腐蚀电化学行为的影响 [J]. 中国腐蚀与防护学报, 1983, 3: 199)
[1] 孙琼琼, 贾玺泉, 徐震霖, 何宜柱, 范光伟, 张威, 李欢. 304430不锈钢铸坯氧化皮结构及结合力研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1649-1655.
[2] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[3] 喻政, 陈明辉, 王金龙, 杨莎莎, 王福会. 煤灰中碱金属硫酸盐和氯盐含量对HR3C和渗铝HR3C不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[4] 吴铭, 任延杰, 马灼春, 张思甜, 陈荐, 牛焱. F55双相不锈钢在800~1000℃纯氧气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[5] 洪孝木, 王永强, 李娜, 田凯, 杜娟. 时效处理对马氏体时效硬化不锈钢显微组织和局部腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[6] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[7] 于佳汇, 王彤彤, 高云, 高荣杰. Bi2S3/TiO2 纳米复合材料的制备及其对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[8] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[9] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[10] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[11] 冯兴国, 顾卓然, 范琦琦, 卢向雨, 杨雅师. 改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[12] 叶梦颖, 于佳汇, 王彤彤, 高荣杰. Bi2S3/CdS/TiO2 纳米复合材料的制备及对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 372-380.
[13] 凌东, 何坤, 余靓, 董立谨, 张华礼, 李玉飞, 王勤英, 张智. 高温高压CO2 环境中超级13Cr不锈钢点蚀有限元模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
[14] 王智慧, 吴雷, 姜懿珊, 张弦, 万响亮, 李光强, 吴开明. 形变强化和逆相变细晶强化对Fe-18Cr-8Ni钢耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 429-436.
[15] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.