Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 772-780     CSTR: 32134.14.1005.4537.2023.197      DOI: 10.11902/1005.4537.2023.197
  研究报告 本期目录 | 过刊浏览 |
1, 2, 4-三唑在模拟调相机转子内冷却水中对铜的缓蚀作用
冯礼奎1, 程一杰1, 宋小宁1, 于志勇1, 严梓轩2, 张大全2()
1.国网浙江省电力公司电力科学研究院 杭州 310014
2.上海电力大学环境与化学工程学院 上海 201306
Corrosion Inhibition of 1, 2, 4-triazaole on Copper in a Stimulated Cooling Water for Synchronous Condenser
FENG Likui1, CHENG Yijie1, SONG Xiaoning1, YU Zhiyong1, YAN Zixuan2, ZHANG Daquan2()
1. State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China
2. Department of Environment and Chemical Engineering, Shanghai University of Electric Power, Shanghai 201306, China
引用本文:

冯礼奎, 程一杰, 宋小宁, 于志勇, 严梓轩, 张大全. 1, 2, 4-三唑在模拟调相机转子内冷却水中对铜的缓蚀作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 772-780.
Likui FENG, Yijie CHENG, Xiaoning SONG, Zhiyong YU, Zixuan YAN, Daquan ZHANG. Corrosion Inhibition of 1, 2, 4-triazaole on Copper in a Stimulated Cooling Water for Synchronous Condenser[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 772-780.

全文: PDF(5550 KB)   HTML
摘要: 

选用1.2.4-三唑(TAZ)作为转子冷却水模拟溶液中铜导线的缓蚀剂。通过pH计,电导率仪,溶氧仪检测了使用TAZ前后对转子冷却水模拟溶液的水质变化影响,结果表明TAZ的加入会一定程度上降低溶液的pH值,对电导率和溶氧量的影响不大。采用失重法、动态电位极化法和电化学阻抗谱法研究了TAZ在转子冷却水模拟溶液中对Cu的缓蚀性能。结果表明,随着TAZ浓度的增加,Cu的腐蚀速率降低,腐蚀电流密度减少,其缓蚀效率提高。当TAZ的加入量为10 mmol/L时,其缓蚀效率最高为99.9%(失重法)和92.0%(电化学阻抗法)。采用Langmuir等温线拟合金属表面的吸附过程,证实了TAZ在Cu表面的吸附属于混合吸附。通过理论计算进一步证明了TAZ在铜合金表面具有较好的吸附作用,可以有效地抑制模拟冷却水溶液中Cu腐蚀。在转子冷却水溶液体系中,TAZ对Cu具有较好的缓蚀性能,是一种自发吸附的绿色缓蚀剂。

关键词 调相机缓蚀124-三唑冷却水    
Abstract

The effect of a corrosion inhibitor 1.2.4-Triazole (TAZ) on the water quality of a simulated solution of the rotor cooling water and the corrosion inhibition performance for pure Cu-plate were assessed by means of pH meter, conductivity meter and dissolved oxygen analyzer, as well as measurements such as mass loss, dynamic potentiodynamic polarization curve, and electrochemical impedance spectroscopy. The results show that the addition of TAZ can reduce the pH value to a certain extent, but have little effect on the conductivity and dissolved oxygen content of the solution; With the increase of TAZ concentration, the corrosion rate and the corrosion current density for Cu decrease, i.e., its corrosion inhibition efficiency rises. The highest corrosion inhibition efficiency was 99.9% (loss-in-mass method) and 92.0% (EIS method) when the dose of TAZ was 10 mmol/L. The adsorption process on the metal surface was fitted using Langmuir isotherm, which confirmed that the adsorption of TAZ on the copper surface is a mixed adsorption. The theoretical calculations further proved that TAZ has a better adsorption effect on the surface of Cu, which can effectively inhibit the Cu corrosion in the simulated solution. It is expected that TAZ may have better corrosion inhibition performance for Cu in the rotor cooling waters, which is a kind of green corrosion inhibitor in spontaneous adsorption. Thus, the present results may be a meaningful reference for the application of corrosion inhibitor to protect the hollow-core copper conductors in the rotor cooling water for synchronous condenser.

Key wordssynchronous condenser    corrosion inhibition    1,2,4-Triazole    copper    coolant
收稿日期: 2023-06-16      32134.14.1005.4537.2023.197
ZTFLH:  TG174  
基金资助:国网浙江省电力有限公司科技项目(5211DS22000L)
通讯作者: 张大全,E-mail:zhangdaquan@shiep.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: ZHANG Daquan, E-mail: zhangdaquan@shiep.edu.cn
作者简介: 冯礼奎,男,1977年生,正高级工程师
图1  Cu在40℃含不同浓度TAZ的模拟转冷水中静态腐蚀实验数据
图2  Cu在不同浓度TAZ的转冷水溶液浸泡前后的pH值、溶氧量和电导率
图3  Cu在含不同TAZ浓度的模拟内冷水中浸泡实验前后的荧光光谱
图4  Cu在室温含不同浓度TAZ的模拟冷却水中的开路电位和极化曲线

C

mmol·L-1

Ecorr

V vs. SCE

Icorr

μA·cm-2

-βc

mV·dec-1

βa

mV·dec-1

ηi

%

Blank-0.0511.450176.7318.2-
0.5-0.1935.074 × 10-2129.9211.096.5
1-0.2314.390 × 10-2132.8216.497.0
5-0.2744.138 × 10-2140.5226.797.1
10-0.2272.459 × 10-2126.8213.098.3
15-0.2353.396 × 10-2139.4218.497.7
20-0.2374.200 × 10-2135.9222.897.1
表1  铜在添加不同浓度TAZ的室温模拟冷却水中的极化曲线参数
图5  铜电极在含有不同浓度TAZ的模拟内冷水中的电化学阻抗谱
图6  阻抗数据拟合的等效电路

TAZ

mmol·L-1

RS

kΩ·cm2

Qf

Rf

kΩ·cm2

Qdl

Rct

kΩ·cm2

Rp

kΩ·cm2

X2

ηE

%

Y0

nS⋅s n ·cm-2

n

Y0

μS·s n ·cm-2

n
Blank2.5653.0100.919.02215.450.64206.1215.1221.28 × 10-3-
11.1191.9600.8715.814.5600.7517711786.811.80 × 10-388.0
50.8490.8050.9235.213.9540.7620522087.217.87 × 10-489.7
101.1501.2220.8923.193.4520.7726592682.191.27 × 10-392.0
151.0951.3290.8816.563.2470.8122692285.569.83 × 10-490.6
201.0860.9990.9228.374.5680.7616211266.716.87 × 10-487.0
表2  铜电极在含有不同浓度TAZ的模拟内冷水中的电化学阻抗谱拟合参数
图7  TAZ的Langmuir吸附等温线及相关参数

TAZ

mmol·L-1

Goodness of Fitting (GOF)Mean Square Error (MSE)

Thickness

of TA2

nm

20.999992.46428.78
50.999965.11667.86
100.999955.64808.64
150.9998210.5888.76
200.999366.59128.87
表3  TAZ在样品表面的成膜厚度及参数
图8  铜在含有不同浓度TAZ的模拟内冷水浸泡后的水接触角
图9  TAZ量子化学计算
图10  Cu表面未吸附TAZ的总态密度和吸附TAZ的投影态密度及体系的差分电荷密度
图11  TAZ吸附的分子动力学模拟
1 Zhou J. Temperature warning and fault diagnosis of air cooler of hydro-generator [D]. Chongqing: Chongqing University of Technology, 2022
1 周 俊. 水轮发电机空气冷却器温度预警及故障诊断研究 [D]. 重庆: 重庆理工大学, 2022
2 Huang G K. Optimization and transformation of rotor cooling water system of 300MW double water internal cooling generator unit [J]. Mod. Ind. Econ. Inform., 2021, 11(9): 189
2 黄广逵. 基于300MW双水内冷发电机组转子冷却水系统优化改造 [J]. 现代工业经济和信息化, 2021, 11(9): 189
3 Liu X. Analytical study of copper corrosion inhibitors BTA and MBT in circulating water [D]. Jinan: Shandong University, 2014
3 刘 兴. 循环水中铜缓蚀剂BTA和MBT的分析研究 [D]. 济南: 山东大学, 2014
4 Huang H L, Guo X M. The relationship between the inhibition performances of three benzo derivatives and their structures on the corrosion of copper in 3.5 wt.% NaCl solution [J]. Colloids Surf., 2020, 598A: 124809
5 Bayoumi F M, Abdullah A M, Attia B. Kinetics of corrosion inhibition of benzotriazole to copper in 3.5% NaCl [J]. Mater. Corros., 2008, 59: 691
6 Grillo F, Gattinoni C, Larrea C R, et al. Copper adatoms mediated adsorption of benzotriazole on a gold substrate [J]. Appl. Surf. Sci., 2022, 600: 154087
doi: 10.1016/j.apsusc.2022.154087
7 Liang Y B, Zhang Q Z, Han C H, et al. Inhibition behavior of a nano-corrosion inhibitor capsule prepared from MOFs and BTA for copper [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1058
7 连宇博, 张庆祝, 韩创辉 等. 一种基于MOFs与BTA的纳米缓蚀胶囊对铜的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1058
doi: 10.11902/1005.4537.2021.288
8 Ryu H Y, Lee C H, Lee S U, et al. Theoretical validation of inhibition mechanisms of benzotriazole with copper and cobalt for CMP and post-CMP cleaning applications [J]. Microelectron. Eng., 2022, 262: 111833
doi: 10.1016/j.mee.2022.111833
9 Wang Z Y. Analysis and treatment measures to the TBM-160-2 water cooled generator rotor failure [J]. Mech. Res. Appl., 2016, 29(1): 195
9 王征远. TBM-160-2型水冷式发电机转子故障的原因分析及处理对策 [J]. 机械研究与应用, 2016, 29(1): 195
10 Wang H, Chen G M, Ni Z F, et al. Effect of 1, 2, 4-triazole and benzotriazole on chemical-mechanical polishing of 316L stainless steel [J]. Diam. Abr. Eng., 2021, 41(1): 83
10 王 浩, 陈国美, 倪自丰 等. 1, 2, 4–三氮唑和苯并三氮唑对316L不锈钢化学机械抛光的影响 [J]. 金刚石与磨料磨具工程, 2021, 41(1): 83
11 Bai X, Cheng S C. Research progress of 1, 2, 3-benzotriazole as a corrosion inhibitor for copper [J]. J. Chem. Ind. Eng., 2011, 32(6): 21
doi: 10.1016/j.jiec.2015.09.003
11 白 雪, 程世超. 1, 2, 3-苯并三氮唑铜缓蚀剂的研究进展 [J]. 化学工业与工程技术, 2011, 32(6): 21
12 Yin D, Yang L, Niu X H, et al. Theoretical and electrochemical analysis on inhibition effect of benzotriazole and 1, 2, 4-triazole on cobalt surface [J]. Colloid. Surf., 2020, 591A: 124516
13 Tchoumene R, Kenne Dedzo G, Ngameni E. Intercalation of 1, 2, 4-triazole in methanol modified-kaolinite: Application for copper corrosion inhibition in concentrated sodium chloride aqueous solution [J]. J. Solid State Chem., 2022, 311: 123103
doi: 10.1016/j.jssc.2022.123103
14 Liu P, Wang G Y, Zhao Y W, et al. Anti-corrosion mechanisms of 1, 2, 4-triazole and benzotriazole on the aluminum during chemical mechanical polishing process [J]. Mater. Prot., 2019, 52(5): 6
14 刘 萍, 王永光, 赵永武 等. 铝化学机械抛光中1, 2, 4-三唑和苯并三氮唑的缓蚀机制 [J]. 材料保护, 2019, 52(5): 6
15 Zhao W W, Zhao S L, Liang H D. Determined copper in aqueous solution by flame atomic absorption spectrometry [J]. Sci. Technol. Eng., 2007, 7: 5039
15 赵微微, 赵松林, 梁华定. 火焰原子吸收光谱法测定水样中铜离子 [J]. 科学技术与工程, 2007, 7: 5039
16 Chen Y F, Li Z X, Wang H N, et al. Corrosion behavior of T2 copper in static artificial seawater [J]. Mater. Prot., 2018, 51(2): 14
16 陈云飞, 李争显, 王浩楠 等. T2紫铜在静态人造海水中的腐蚀行为 [J]. 材料保护, 2018, 51(2): 14
17 Fan C C. Study on synthesis and application of 1.2 4-triazole derivatives [D]. Nanjing: Southeast University, 2018
17 范长春. 1, 2, 4-三唑衍生物的合成及应用研究 [D]. 南京: 东南大学, 2018
18 Ghailane T, Balkhmima R A, Ghailane R, et al. Experimental and theoretical studies for mild steel corrosion inhibition in 1M HCl by two new benzothiazine derivatives [J]. Corros. Sci., 2013, 76: 317
doi: 10.1016/j.corsci.2013.06.052
19 Hassairi H, Bousselmi L, Khosrof S, et al. Evaluation of the inhibitive effect of benzotriazole on archeological bronze in acidic medium [J]. Appl. Phys., 2013, 113A: 923
20 Kumar R, Chahal S, Kumar S, et al. Corrosion inhibition performance of chromone-3-acrylic acid derivatives for low alloy steel with theoretical modeling and experimental aspects [J]. J. Mol. Liq., 2017, 243: 439
doi: 10.1016/j.molliq.2017.08.048
21 Tan B C, Zhang S T, Qiang Y J, et al. A combined experimental and theoretical study of the inhibition effect of three disulfide-based flavouring agents for copper corrosion in 0.5 M sulfuric acid [J]. J. Colloid Interf. Sci., 2018, 526: 268
doi: 10.1016/j.jcis.2018.04.092
22 Dehghani A, Bahlakeh G, Ramezanzadeh B, et al. Potential role of a novel green eco-friendly inhibitor in corrosion inhibition of mild steel in HCl solution: detailed macro/micro-scale experimental and computational explorations [J]. Construct. Build. Mater., 2020, 245: 118464
doi: 10.1016/j.conbuildmat.2020.118464
23 Li W, Tan B M, Zhang S H, et al. Insights into triazole derivatives as potential corrosion inhibitors in CMP process: experimental evaluation and theoretical analysis [J]. Appl. Surf. Sci., 2022, 602: 154165
doi: 10.1016/j.apsusc.2022.154165
24 Zhao X, Chen C F, Sun Q, et al. Molecular structure optimization design of inhibitors based on frontier orbitals theory [J]. Appl. Surf. Sci., 2019, 494: 895
doi: 10.1016/j.apsusc.2019.07.248
25 Guo X M, Huang H L, Liu D. The inhibition mechanism and adsorption behavior of three purine derivatives on the corrosion of copper in alkaline artificial seawater: structure and performance [J]. Colloid. Surf., 2021, 622A: 126644
26 Srivastava V, Salman M, Chauhan D S, et al. (E)-2-styryl-1H-benzo[d] imidazole as novel green corrosion inhibitor for carbon steel: experimental and computational approach [J]. J. Mol. Liq., 2021, 324: 115010
doi: 10.1016/j.molliq.2020.115010
27 Dai W, Zhang Y Y. Molecular dynamics simulation of the adsorption behavior of amino acid corrosion inhibitor on Cu(001) surface [J]. Appl. Mech. Mater., 2011, 121-126: 226
doi: 10.4028/www.scientific.net/AMM.121-126
28 Li W, Ma T D, Tan B M, et al. The effect of structural properties of benzo derivative on the inhibition performance for copper corrosion in alkaline medium: experimental and theoretical investigations [J]. Colloid. Surf., 2022, 649A: 129531
[1] 欧阳嘉露, 王茜茜, 韩霞, 王子明. 油水交替环境中咪唑啉对CO2 腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 707-715.
[2] 胡丽华, 衣华磊, 杨维健, 孙冲, 孙建波. 水含量对超临界CO2 输送管道腐蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
[3] 张照易, 周学杰, 陈昊, 吴军, 陈志飈, 陈志坚. CCSAQ235B钢在长江淡水环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 735-744.
[4] 解辉, 于超, 花靖, 蒋秀. NH+4浓度对N80钢在饱和CO2 的3%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[5] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[6] 龙武剑, 唐杰, 罗启灵, 丘章鸿, 王海龙. 生物质碳点对Q235钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[7] 周龙, 鲁骏, 丁文珊, 李昊, 陶涛, 师超, 邵亚薇, 刘光明. 不同植酸盐对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[8] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[9] 胡琪, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. Inconel 718及其渗铝涂层在Na2SO4 + 5%NaCl混合盐膜下的热腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[10] 魏高飞, 邓书端, 邵丹丹, 徐娟, 李向红. 滇润楠叶提取物对铝在HCl中的缓蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(3): 601-611.
[11] 邓双九, 李昌, 余梦辉, 韩兴. IN625激光熔覆层腐蚀致微裂纹扩展机理研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[12] 徐佳新, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K452合金表面CVD渗铝涂层制备温度对其750℃硫酸盐热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
[13] 柳泽邦, 冉博元, 裴恒, 罗凯林, 赵智斌, 韩鹏, 强玉杰. 金属铝用复配缓蚀剂协同缓蚀作用研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 312-322.
[14] 周兰欣, 张丽萍, 汤燕, 陈柯宇, 周剑军, 师超, 邵亚薇, 刘光明. 植酸锌的制备及其对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 396-404.
[15] 周文彬, 李梦冉, 周欣, 孙海静, 孙杰. 油溶性曼尼希碱缓蚀剂对紫铜在变压器油中的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 453-461.