Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 735-744     CSTR: 32134.14.1005.4537.2023.302      DOI: 10.11902/1005.4537.2023.302
  研究报告 本期目录 | 过刊浏览 |
CCSAQ235B钢在长江淡水环境中腐蚀行为研究
张照易1,2, 周学杰1,2(), 陈昊1,2, 吴军1,2, 陈志飈3, 陈志坚1,2
1.中国机械总院集团武汉材料保护研究所有限公司 武汉 430030
2.湖北武汉大气淡水环境材料腐蚀国家野外科学观测研究站 武汉 430030
3.中国船级社武汉规范研究所 武汉 430030
Corrosion Behavior of Two Steels CCSA and Q235B in Changjiang Freshwater Surroundings
ZHANG Zhaoyi1,2, ZHOU Xuejie1,2(), CHEN Hao1,2, WU Jun1,2, CHEN Zhibiao3, CHEN Zhijian1,2
1. China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China
2. Wuhan Materials Corrosion National Observation and Research Station, Wuhan 430030, China
3. Wuhan Institute of Specification of China Classification Society, Wuhan 430030, China
引用本文:

张照易, 周学杰, 陈昊, 吴军, 陈志飈, 陈志坚. CCSAQ235B钢在长江淡水环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 735-744.
Zhaoyi ZHANG, Xuejie ZHOU, Hao CHEN, Jun WU, Zhibiao CHEN, Zhijian CHEN. Corrosion Behavior of Two Steels CCSA and Q235B in Changjiang Freshwater Surroundings[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 735-744.

全文: PDF(31284 KB)   HTML
摘要: 

利用形貌分析、腐蚀失重、X射线衍射仪(XRD)、电化学方法开展对CCSA和Q235B两种船用钢板材料在长江淡水环境中不同区域(大气区、水线区、水下区)暴露0.5、1、2、3、4和7 a腐蚀行为的研究。结果表明,两种碳钢在长江淡水环境发生明显腐蚀,且腐蚀形貌十分相似,腐蚀发展均遵循幂函数规律;在大气区、水线区和水下区,第7 a CCSA的腐蚀率分别为8、77和40 μm·a-1,Q235B的腐蚀率分别为9、80和41 μm·a-1,在水线区腐蚀最为严重。腐蚀产物成分中除泥沙外,主要包含α-FeOOH、γ-FeOOH、Fe2O3和Fe3O4/γ-Fe2O3。综合电化学分析结果,CCSA较Q235B具有更好的耐蚀性,长江淡水环境不同区域对碳钢腐蚀快慢程度由大到小排序为:水线区>水下区>大气区。

关键词 CCSAQ235B长江淡水环境腐蚀    
Abstract

There is limited studies available on the corrosion of carbon steel in freshwater surroundings. Herewith, plates of two ship steels CCSA and Q235B steel were exposed to different sites such as the atmosphere, waterline, and underwater in freshwater surroundings of the Changjiang River (Yangtze River) for 0.5, 1, 2, 3, 4, and 7 a, then there corrosion behavior was assessed by means of morphology analysis, mass-loss measurement, XRD, and electrochemical techniques. Results show that the two carbon steels suffered from significant corrosion in the freshwater surroundings of the Changjiang River, exhibiting nearly the identical corrosion morphology. Their corrosion processes follow a power function law. After 7 years, the corrosion rates of CCSA were found to be 8, 77 and 40 μm·a-1 in the atmosphere, waterline, and underwater, respectively, while the corrosion rates of Q235B were 9, 80, and 41 μm·a-1 in the same conditions. Among others, the corrosion on the waterline was the highest. The composition of the corrosion product of the two carbon steels was similar, primarily including SiO2, α-FeOOH, γ-FeOOH, Fe2O3 and Fe3O4/γ-Fe2O3. Based on the comprehensive electrochemical analysis results, CCSA demonstrated better corrosion resistance than Q235B. Regarding to the test results in various test sites of freshwater surroundings of the Changjiang River, the corrosion rate of the carbon steels may be ranked in descending order as follows: waterline> underwater > atmospheric.

Key wordsCCSA    Q235B    freshwater environment of Changjiang    corrosion
收稿日期: 2023-09-21      32134.14.1005.4537.2023.302
ZTFLH:  TG174  
通讯作者: 周学杰,E-mail:zhouxj11@163.com,研究方向为腐蚀与防护
Corresponding author: ZHOU Xuejie, zhouxj11@163.com
作者简介: 张照易,男,1999年生,硕士生
SteelCSiMnSPCrNi
CCSA≤0.21≤0.50≥2.50≤0.035≤0.035--
Q235B0.12-0.20≤0.300.30-0.70≤0.045≤0.045≤0.30≤0.30
表1  CCSA和Q235B钢的化学成分 (mass fraction / %)
图1  CCSA钢腐蚀后的宏观形貌
图2  Q235B钢腐蚀后的宏观形貌
图3  CSSA钢除锈后的微观形貌
图4  Q235B钢除锈后的微观形貌
Time/aCCSA steelQ235B steel
Atmos-phereAbove the waterlineBelow the waterlineUnder-waterAtmos-phereAbove the waterlineBelow the waterlineUnder-water
0.545.496.2136.3117.553.1104.6141.2125.4
166.5112.6150.8137.277.8132.3180.9148.7
2120.3189.2281.9193.5154.1200.3298.5220.6
3162.6280.5390.2270.4176.0310.5425.1319.4
4175.7398.8510.3400.4182.0418.3539.3421.1
7222.3671.2802.4796.9224.6732.0853.9827.4
表2  CCSA和Q235B钢在长江淡水环境中暴露不同时间后的平均点蚀坑深度 (μm)
图5  CCSA和Q235B钢腐蚀失重及拟合曲线
MaterialAreamnR2Fitting formula
CCSAAtmosphere0.019640.409640.95912C = 0.01964T0.40964
Waterline0.106660.721590.97966C = 0.10666T0.72159
Underwater0.063690.643840.98483C = 0.06369T0.64384
Q235BAtmosphere0.021640.420720.95678C = 0.02164T0.42072
Waterline0.108080.733980.98666C = 0.10808T0.73398
Underwater0.064570.654540.98972C = 0.06457T0.65454
表3  CCSA和Q235B钢在长江淡水环境腐蚀失重拟合结果
Time / aCCSA steelQ235B steel
AtmosphereWaterlineUnderwaterAtmosphereWaterlineUnderwater
0.52899812910894
129116843112288
217114601911659
313111571511358
4119854139954
78774098041
表4  CCSA和Q235B钢在长江淡水环境中的腐蚀速率 (μm·a-1)
图6  CCSA和Q235B钢不同区域腐蚀产物的XRD谱
Corrosion productCCSA steelQ235B steel
AtmosphereWaterlineUnderwaterAtmosphereWaterlineUnderwater
SiO240.5%35.8%58.8%30.5%34.4%50.7%
α-FeOOH15.1%18.9%15.3%12.8%23.0%15.4%
γ-FeOOH35.1%17.2%8.6%45.7%18.7%15.3%
Fe2O37.5%14.4%10.3%8.1%15.5%8.9%
Fe3O4/γ-Fe2O31.8%13.7%7.0%2.9%8.4%9.7%
表5  CCSA和Q235B钢表面腐蚀产物相组成
图7  CCSA和Q235B钢在不同区域的极化曲线
图8  CCSA和Q235B钢在不同区域的极化曲线拟合值
1 He J X, Qin X Z, Yi P, et al. Corrosion exposure study on Q235 steel in marine atmospheric [J]. Surf. Technol., 2006, 35(4): 21
1 何建新, 秦晓洲, 易 平 等. Q235钢海洋大气腐蚀暴露试验研究 [J]. 表面技术, 2006, 35(4): 21
2 Huang G Q, Yang Z H, Ou J C, et al. Corrosion types and evaluation of metallic materials in water environments in China [J]. Corros. Prot., 2010, 31: 255
2 黄桂桥, 杨朝晖, 欧家才 等. 我国金属材料水环境腐蚀类型及其评定 [J]. 腐蚀与防护, 2010, 31: 255
3 Yan M, Huang G Q. Review and expectation on national network for water environment corrosion test in China [J]. Mar. Sci., 2005, 29(7): 73
3 颜 民, 黄桂桥. 中国水环境腐蚀试验站网工作回顾与展望 [J]. 海洋科学, 2005, 29(7): 73
4 Sun Y, Wu J J, Zhang D, et al. Investigation of microorganisms in corrosion product scales on Q235 carbon steel exposed to tidal- and full immersion zone at Qindao- and Sanya-sea waters [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 333
4 孙 艳, 吴佳佳, 张 盾 等. 不同海域、不同腐蚀区带Q235碳钢实海挂片腐蚀产物层内微生物调查 [J]. 中国腐蚀与防护学报, 2018, 38: 333
5 Xue F, Wei X, Dong J H, et al. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34: 1349
doi: 10.1016/j.jmst.2017.11.004
6 Luo X B, Qian J, Su H, et al. Effect of flow velocity on corrosion behavior of typical metal materials for pipes in seawater [J]. Corros. Prot., 2015, 36: 555
6 罗小兵, 钱 江, 苏 航 等. 海水流速对典型金属管材腐蚀行为的影响 [J]. 腐蚀与防护, 2015, 36: 555
7 Cao G, Gao C, Gan F X. Corrosion behaviors of carbon steel in fresh water [J]. Equip. Environ. Eng., 2006, 3(1): 46
7 曹 刚, 高 翠, 甘复兴. 碳钢在淡水环境中的腐蚀行为 [J]. 装备环境工程, 2006, 3(1): 46
8 Zulkafli R, Othman N K, Yaakob N. Surface characteristics of carbon steels in the presence of sulfate reducing bacteria consortiums in CO2 gas environment [J]. Sains Malays., 2022, 51: 3113
doi: 10.17576/jsm
9 Jiang L, Cao G, Mao X H, et al. Effect of microbes on early corrosion behavior of Q235 steel in freshwater [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 177
9 江 莉, 曹 刚, 毛旭辉 等. 淡水微生物对Q235钢早期腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 177
10 Sandu A V, Ciomaga A, Nemtoi G, et al. Corrosion of mild steel by urban river water [J]. Instrum. Sci. Technol., 2015, 43: 545
doi: 10.1080/10739149.2015.1020432
11 Linhardt P. Microbially influenced corrosion of stainless steel by manganese oxidizing microorganisms [J]. Mater. Corros., 2004, 55: 158
12 Yang B J, Wei M M, Yao J H, et al. Corrosion behaviors of 45# and Q235 carbon steel in different water circumstances [J]. Equip. Environ. Eng., 2017, 14(6): 102
12 杨博均, 魏木孟, 姚敬华 等. 45#钢和Q235在不同水环境中的腐蚀行为研究 [J]. 装备环境工程, 2017, 14(6): 102
13 Cao J Y, Fang Z G, Li L, et al. Corrosion behavior of domestic galvanized steel in different water environment: Fresh water and salt water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 169
13 曹京宜, 方志刚, 李 亮 等. 国产镀锌钢在不同水环境中的腐蚀行为: I淡水和盐水 [J]. 中国腐蚀与防护学报, 2021, 41: 169
doi: 10.11902/1005.4537.2021.003
14 Hao Z K, Chen Z B, Zhang D, et al. Initial corrosion behaviors of ship steel plate in fresh water environment [J]. Equip. Environ. Eng., 2017, 14(9): 73
14 郝张科, 陈志飚, 张 东 等. 船用钢板材料在淡水环境中初期腐蚀行为 [J]. 装备环境工程, 2017, 14(9): 73
15 Huang J C, Meng X B, Huang Y H, et al. Atmospheric corrosion of carbon steels in tropical and subtropical climates in Southern China [J]. Mater. Corros., 2020, 71: 1400
16 Panchenko Y M, Marshakov A I, Igonin T N, et al. Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function [J]. Corros. Sci., 2014, 88: 306
doi: 10.1016/j.corsci.2014.07.049
17 Sun Z C, Liang C, Chen Y, et al. Corrosion characteristics and prediction model of aluminum alloys in saturated Na2SO4 solution [J]. Mater. Chem. Phys., 2023, 308: 128273
doi: 10.1016/j.matchemphys.2023.128273
18 Yao Y, Liu G J, Li S Z, et al. Research progress on corrosion prediction model of metallic materials for electrical equipment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 983
18 姚 勇, 刘国军, 黎石竹 等. 金属材料腐蚀预测模型研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 983
19 Mao C L, Xiao K, Dong C F, et al. Corrosion behavior of extra deep drawing cold rolled sheet in stimulative ocean-atmosphere environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 101
19 毛成亮, 肖 葵, 董超芳 等. 超深冲压用冷轧板在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 101
doi: 10.11902/1005.4537.2016.202
20 De la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
21 Wu H Y, Luo Y Z, Zhou G E. Corrosion behaviors and mechanical properties of Q235 steel pipes collapsing due to corrosion after 25-year service in urban industrial atmospheric environment [J]. Constr. Build. Mater., 2023, 395: 132342
doi: 10.1016/j.conbuildmat.2023.132342
22 Laleh M, Pathirana M, Tan M Y. Site-specific local polarisation curve measurements for probing localised corrosion and inhibition [J]. Corros. Sci., 2023, 214: 111019
doi: 10.1016/j.corsci.2023.111019
23 Song X X, Huang S P, Wang C, et al. The initial corrosion behavior of carbon steel exposed to the coastal-industrial atmosphere in Hongyanhe [J]. Acta Metall. Sin., 2020, 56: 1355
doi: 10.11900/0412.1961.2020.00010
23 宋学鑫, 黄松鹏, 汪 川 等. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1355
doi: 10.11900/0412.1961.2020.00010
[1] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[2] 张明, 龚宁, 张博, 霍宏博, 李浩男, 钟显康. 基于腐蚀预测和强度计算的油管服役寿命评估[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[3] 解辉, 于超, 花靖, 蒋秀. NH+4浓度对N80钢在饱和CO2 的3%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[4] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[5] 孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 755-764.
[6] 周龙, 鲁骏, 丁文珊, 李昊, 陶涛, 师超, 邵亚薇, 刘光明. 不同植酸盐对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[7] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[8] 丁昱智, 曹金鑫, 曹凤婷, 李涛, 陶建涛, 王铁钢, 杲广尧, 范其香. 基于风险的检验技术在石油炼化领域中的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 553-566.
[9] 胡琪, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. Inconel 718及其渗铝涂层在Na2SO4 + 5%NaCl混合盐膜下的热腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[10] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[11] 岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[12] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[13] 邓双九, 李昌, 余梦辉, 韩兴. IN625激光熔覆层腐蚀致微裂纹扩展机理研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[14] 徐佳新, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K452合金表面CVD渗铝涂层制备温度对其750℃硫酸盐热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
[15] 戴威, 刘园园, 涂闻芮, 孙阳庭, 李劲, 蒋益明. 外加电位下Ag/Sn电偶的腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.