Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 745-754     CSTR: 32134.14.1005.4537.2023.173      DOI: 10.11902/1005.4537.2023.173
  研究报告 本期目录 | 过刊浏览 |
NH+4浓度对N80钢在饱和CO2 的3%NaCl溶液中腐蚀行为的影响
解辉1,2,3, 于超1,2,3, 花靖1,2,3, 蒋秀1,2,3()
1.化学品安全全国重点实验室 青岛 266100
2.中石化安全工程研究院有限公司 青岛 266110
3.应急管理部化学品登记中心 青岛 266100
Effect of NH+4 Concentration on Corrosion Behavior of N80 Steel in CO2-saturated 3%NaCl Solutions
XIE Hui1,2,3, YU Chao1,2,3, HUA Jing1,2,3, JIANG Xiu1,2,3()
1. State Key Laboratory of Chemical Safety, Qingdao 266100, China
2. SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266100, China
3. Registration Center for Chemicals, Ministry of Emergency Management, Qingdao 266100, China
引用本文:

解辉, 于超, 花靖, 蒋秀. NH+4浓度对N80钢在饱和CO2 的3%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
Hui XIE, Chao YU, Jing HUA, Xiu JIANG. Effect of NH+4 Concentration on Corrosion Behavior of N80 Steel in CO2-saturated 3%NaCl Solutions[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 745-754.

全文: PDF(9194 KB)   HTML
摘要: 

利用失重法和电化学方法研究了N80钢在不同NH+4浓度下饱和CO2的3%NaCl溶液中的腐蚀行为,通过SEM、3D轮廓仪、XRD和XPS对腐蚀形貌和腐蚀产物进行表征,阐释了腐蚀机理。结果表明,NH+4浓度对N80钢的腐蚀速率产生促进和抑制双重效果。当NH+4浓度为0~500 mg/L时,N80钢的均匀腐蚀速率随NH+4浓度增加而增加;当NH+4浓度增加至1000~2000 mg/L时,N80钢的均匀腐蚀速率随NH+4浓度增加而降低,且点蚀速率随NH+4浓度的变化规律与均匀腐蚀基本相同;当NH+4浓度为500 mg/L时,均匀腐蚀速率和小孔腐蚀速率最大。当NH+4浓度≤500 mg/L时,NH+4和Cl-在金属表面发生了竞争吸附;当NH+4浓度大于500 mg/L时,NH+4在金属表面发生吸附对腐蚀起抑制作用。

关键词 N80钢饱和CO2环境NH+4腐蚀NH+4吸附    
Abstract

NH4Cl was one of the important factors causing corrosion of tubing steel in shale oil environment. Herewith, the effect of NH+4 concentration on the corrosion behavior of N80 steel in 3%NaCl solution saturated with CO2 was studied by means of mass loss method, electrochemical methods, scanning electron microscope (SEM), 3D profilometer, X-ray diffraction(XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that NH+4 concentration had a dual effect on the corrosion rate of N80 steel, i.e. promoting and inhibiting the corrosion rate. When the NH+4 concentration was 0~500 mg/L, the uniform corrosion rate of N80 steel increased with the increasing NH+4 concentration, while in the NH+4 concentration range of 1000~2000 mg/L, the uniform corrosion rate of N80 steel decreased with the increasing NH+4 concentration, however, the pitting corrosion rate showed a similar trend as the uniform corrosion. When the NH+4 concentration was 500 mg/L, the uniform corrosion rate and pitting corrosion rate of N80 steel were the highest. Competition adsorption occurred between NH+4 and Cl- on the metal surface at NH+4 concentrations ≤ 500 mg/L, while NH+4 adsorption inhibited corrosion when NH+4 concentration exceeded 500 mg/L.

Key wordsN80 steel    saturated CO2 environment    NH+4 corrosion    NH+4 absorption
收稿日期: 2023-05-22      32134.14.1005.4537.2023.173
ZTFLH:  TG174  
基金资助:中国石油化工股份有限公司科技攻关项目(320144)
通讯作者: 蒋秀,E-mail:jiangx.qday@sinopec.com,研究方向为油气系统及CO2储运系统的设备腐蚀防护与安全
Corresponding author: JIANG Xiu, E-mail: jiangx.qday@sinopec.com
作者简介: 解 辉,男,1996年生,硕士,助理工程师
图1  N80钢金相显微组织
图2  不同NH+4浓度的3%NaCl溶液中N80钢的腐蚀速率
图3  不同NH+4浓度的3%NaCl溶液中N80钢的自腐蚀电位
图4  不同NH+4浓度的3%NaCl溶液中N80钢的线性极化电阻和腐蚀速率
图5  不同NH+4浓度的3%NaCl溶液中N80钢的动电位极化曲线
图6  不同NH+4浓度的3%NaCl溶液中N80钢的电化学阻抗图
图7  符合EIS数据的等效电路图
NH+4 concentration mg·L-1

Time

h

Rs

Ω·cm2

CPEf

F·cm-2

n1

Rm

Ω·cm2

CPEdl

F·cm-2

n2

Rct

Ω·cm2

0729.2414.649 × 10-40.896016812.009 × 10-30.39112197
150729.5776.201 × 10-40.914822608.881 × 10-31264.8
500727.6706.670 × 10-40.914410141.008 × 10-30.49641206
1000724.8463.522 × 10-40.938232403.261 × 10-30.7541784.8
2000724.9763.888 × 10-40.926839362.684 × 10-30.69162024
表1  N80钢的EIS拟合数据
图8  不同NH+4浓度的3%NaCl溶液中N80钢的(Rm + Rct)值的变化
图9  在不同NH+4浓度的3%NaCl溶液中N80钢的腐蚀形貌、3D轮廓图和腐蚀产物元素组成
图10  在不同NH+4浓度的3%NaCl溶液中N80钢腐蚀产物的XRD谱图
图11  在不同NH+4浓度3%NaCl溶液中N80钢腐蚀产物的XPS谱图
图12  N原子在N80钢表面吸附机理示意图
1 Sun B Z, Zhou X C, Li X R, et al. Stress corrosion cracking behavior of 316L stainless steel with varying microstructure in ammonium chloride environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 811
1 孙宝壮, 周霄骋, 李晓荣 等. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理 [J]. 中国腐蚀与防护学报, 2021, 41: 811
doi: 10.11902/1005.4537.2020.172
2 Huang J H, Yuan X, Chen W, et al. Effect of temperature on corrosion behavior of pipeline steels N80 and TP125V in artificial CO2-saturated fracturing fluid of shale gas [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 251
2 黄家和, 袁 曦, 陈文 等. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2023, 43: 251
doi: 10.11902/1005.4537.2022.076
3 An D P, Feng Y J. Prospective prospect of shale oil exploration and development [N]. China Electric Power News, 2022-09-05(003)
3 安栋平, 冯义军. 页岩油勘探开发前景可期 [N]. 中国电力报, 2022-09-05(003)
4 Qiao R W, Li F X, Zhang S C, et al. CO2 mass transfer and oil replacement capacity in fractured shale oil reservoirs: from laboratory to field [J]. Front. Earth Sci., 2021, 9: 794534
doi: 10.3389/feart.2021.794534
5 Lan Y, Yang Z Q, Wang P, et al. A review of microscopic seepage mechanism for shale gas extracted by supercritical CO2 flooding [J]. Fuel, 2019, 238: 412
doi: 10.1016/j.fuel.2018.10.130
6 Zhang Y X, He J M, Li X, et al. Experimental study on the supercritical CO2 fracturing of shale considering anisotropic effects [J]. J. Petrol. Sci. Eng., 2019, 173: 932
doi: 10.1016/j.petrol.2018.10.092
7 Xiong Q, Hu J Y, Gu C R, et al. The study of under deposit corrosion of carbon steel in the flowback water during shale gas production [J]. Appl. Surf. Sci., 2020, 523: 146534
doi: 10.1016/j.apsusc.2020.146534
8 Zhao G X, Wang Y C, Zhang S Q, et al. Influence mechanism of H2S/CO2-charging on corrosion of J55 steel in an artificial solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 785
8 赵国仙, 王映超, 张思琦 等. H2S/CO2对J55钢腐蚀的影响机制 [J]. 中国腐蚀与防护学报, 2022, 42: 785
doi: 10.11902/1005.4537.2021.262
9 Wu G Y, Zhao W W, Wang Y R, et al. Analysis on corrosion-induced failure of shale gas gathering pipelines in the southern Sichuan Basin of China [J]. Eng. Fail. Anal., 2021, 130: 105796
doi: 10.1016/j.engfailanal.2021.105796
10 Li D G, Feng Y R, Bai Z Q, et al. Characteristics of CO2 corrosion scale formed on N80 steel in stratum water with saturated CO2 [J]. Appl. Surf. Sci., 2007, 253: 8371
doi: 10.1016/j.apsusc.2007.04.011
11 Xing X S, Fan B T, Zhu X Y, et al. Corrosion characteristics of P110SS casing steel for ultra-deep well in artificial formation water with low H2S and high CO2 content [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 611
11 幸雪松, 范白涛, 朱新宇 等. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2023, 43: 611
doi: 10.11902/1005.4537.2022.225
12 Cheng Y P, Bai Y, Li Z L, et al. The corrosion behavior of X65 steel in CO2/oil/water environment of gathering pipeline [J]. Anti-Corros. Methods Mater., 2019, 66: 174
doi: 10.1108/ACMM-07-2018-1969
13 Alaba P A, Adedigba S A, Olupinla S F, et al. Unveiling corrosion behavior of pipeline steels in CO2-containing oilfield produced water: towards combating the corrosion curse [J]. Crit. Rev. Solid State Mater. Sci., 2020, 45: 239
doi: 10.1080/10408436.2019.1588706
14 Ni Y Y, Yao L M, Sui J L, et al. Isotopic geochemical characteristics and identification indexes of shale gas hydraulic fracturing flowback water/produced water [J]. Nat. Gas Geosci., 2022, 33: 78
14 倪云燕, 姚立邈, 隋建立 等. 页岩气压裂返排液/采出水同位素地球化学特征与鉴别指标 [J]. 天然气地球科学, 2022, 33: 78
15 Zhang Y L, Han L, Liu X H. Corrosion behavior of several kinds of steel in NH4Cl environment [J]. Corros. Prot., 2014, 35: 711
15 张艳玲, 韩 磊, 刘小辉. 几种钢材在NH4Cl环境中的腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 711
16 Li R D, Huang H, Wang X D, et al. Effect of ammonium salt on corrosion of pipelines and components in a crude oil distillation column: Electrochemical and AIMD studies [J]. Corros. Sci., 2022, 203: 110362
doi: 10.1016/j.corsci.2022.110362
17 Wang H B, Yu J P, Lu C S. Investigation of the corrosion behavior of mild steel in the NH4Cl/CO2 corrosive medium [J]. Trans. Indian Inst. Met., 2021, 74: 2631
doi: 10.1007/s12666-021-02303-9
18 Duan Y F, Zhao X Y, Li C F, et al. Study on corrosion of carbon steel and alloy steel in ammonium chloride solution [J]. Corros. Prot. Petrochem. Ind., 2017, 34(1): 8
18 段永锋, 赵小燕, 李朝法 等. 碳钢及合金钢在氯化铵溶液中腐蚀规律研究 [J]. 石油化工腐蚀与防护, 2017, 34(1): 8
19 Toba K, Ueyama M, Kawano K, et al. Corrosion of carbon steel and alloys in concentrated ammonium chloride solutions [J]. Corrosion, 2012, 68: 1049
doi: 10.5006/0587
20 Gu Y. Research on the corrosion behavior and corrosion resistance mechanism of low C medium Cr steel in CO2 EOR gathering & transportation environment [D]. Beijing: University of Science and Technology Beijing, 2020
20 顾 洋. 低C中Cr钢在CO2驱集输环境中的腐蚀行为及耐蚀机制研究 [D]. 北京: 北京科技大学, 2022
21 Human A M, Exner H E. Electrochemical behaviour of tungsten-carbide hardmetals [J]. Mater. Sci. Eng., 1996, 209A: 180
22 Kahyarian A, Brown B, Nesic S. Electrochemistry of CO2 corrosion of mild steel: Effect of CO2 on iron dissolution reaction [J]. Corros. Sci., 2017, 129: 146
doi: 10.1016/j.corsci.2017.10.005
23 Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions [J]. Corros. Sci., 1999, 41: 117
doi: 10.1016/S0010-938X(98)00104-8
24 Mora-Mendoza J L, Turgoose S. Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions [J]. Corros. Sci., 2002, 44: 1223
doi: 10.1016/S0010-938X(01)00141-X
25 Campbell S A, Radford G J W, Tuck C D S, et al. Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy [J]. Corrosion, 2002, 58: 57
doi: 10.5006/1.3277305
26 Wang H B, Li Y, Cheng G X, et al. Electrochemical investigation of corrosion of mild steel in NH4Cl solution [J]. Int. J. Electrochem. Sci., 2018, 13: 5268
doi: 10.20964/2018.06.05
27 Jiang X. Corrosion behaviors and inhibition mechanisms for CO2 corrosion of N80 steel under flowing conditions [D]. Shenyang: Institute of Metals, Chinese Academy of Sciences, 2005
27 蒋 秀. 流动条件下N80钢的CO2腐蚀行为及缓蚀机理研究 [D]. 沈阳: 中国科学院金属研究所, 2005
[1] 黄家和, 袁曦, 陈文, 闫文静, 金正宇, 柳海宪, 刘宏芳, 刘宏伟. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[2] 韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[3] 鲁照玲,郭兴蓬. 月桂酸在CO2饱和盐水溶液中缓蚀行为和机理研究[J]. 中国腐蚀与防护学报, 2010, 30(6): 475-480.
[4] 李党国 . 温度对N80钢饱和CO2地层水中腐蚀电化学性能影响[J]. 中国腐蚀与防护学报, 2008, 28(2): 104-107 .
[5] 马文海; 裴晓含; 高飞; 高纯良 . N80钢在模拟深层气井水溶液中的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2007, 27(1): 8-13 .
[6] 陈长风; 路民旭; 赵国仙 . 含1%Cr的N80钢CO2腐蚀产物膜特征[J]. 中国腐蚀与防护学报, 2003, 23(6): 330-334 .
[7] 陈长风; 路民旭; 赵国仙 . N80油管钢CO2腐蚀点蚀行为[J]. 中国腐蚀与防护学报, 2003, 23(1): 21-25 .
[8] 陈长风; 赵国仙; 严密林 . 含Cr油套管钢CO2腐蚀产物膜特征[J]. 中国腐蚀与防护学报, 2002, 22(6): 335-338 .
[9] 陈长风; 赵国仙; 路民旭 . N80钢CO2腐蚀产物膜研究[J]. 中国腐蚀与防护学报, 2002, 22(3): 143-147 .