|
|
植酸锌的制备及其对Q235钢腐蚀行为的影响 |
周兰欣1, 张丽萍1, 汤燕1, 陈柯宇1, 周剑军1, 师超1,2( ), 邵亚薇2, 刘光明1 |
1.南昌航空大学 江西省金属材料微结构调控重点实验室 南昌 330063 2.哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001 |
|
Preparation of Zinc Phytate and Its Effect on Corrosion Behavior of Carbon Steel |
ZHOU Lanxin1, ZHANG Liping1, TANG Yan1, CHEN Keyu1, ZHOU Jianjun1, SHI Chao1,2( ), SHAO Yawei2, LIU Guangming1 |
1.Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China 2.College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China |
引用本文:
周兰欣, 张丽萍, 汤燕, 陈柯宇, 周剑军, 师超, 邵亚薇, 刘光明. 植酸锌的制备及其对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 396-404.
Lanxin ZHOU,
Liping ZHANG,
Yan TANG,
Keyu CHEN,
Jianjun ZHOU,
Chao SHI,
Yawei SHAO,
Guangming LIU.
Preparation of Zinc Phytate and Its Effect on Corrosion Behavior of Carbon Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 396-404.
1 |
Yang J H. A study on mechano-chemical behavior of marine anti-corrosive coating/carbon steel system[D]. Dalian: Dalian University of Technology, 2017
|
1 |
杨宏启. 海洋工程防腐涂层/碳钢体系的力学化学行为研究[D]. 大连: 大连理工大学, 2017
|
2 |
Wu F Y, Wang C, Zhang Y Z, et al. Corrosion status evaluation of carbon steel pipeline buried in open industrial water system of nuclear power plant[J]. Total Corros. Control, 2021, 35(10): 154
|
2 |
吴昉赟, 王 聪, 张彦召 等. 核电厂开式工业水系统埋地碳钢管道腐蚀行为研究[J]. 全面腐蚀控制, 2021, 35(10): 154
|
3 |
Yang H Y, Huang G Q, Yang Z H, et al. Study on the corrosion laws of 10 kinds of steel samples in the tidal range zone and total immersion zone in different marine environments[J]. Mater. Prot., 2021, 54(10): 1
|
3 |
杨海洋, 黄桂桥, 杨朝晖 等. 10种钢样在不同海水环境的潮差区和全浸区腐蚀规律研究[J]. 材料保护, 2021, 54(10): 1
|
4 |
He J X. Characteristics of atmospheric corrosion behavior of carbon steel in tropical marine atmosphere[D]. Beijing: China Academy of Machinery Science and Technology, 2008
|
4 |
何建新. 热带海洋大气环境下碳钢大气腐蚀行为规律特征[D]. 北京: 机械科学研究总院, 2008
|
5 |
Nie X H, Li Y L, Li J K, et al. Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil[J]. J. Mater. Eng., 2010, (8): 24
|
5 |
聂向晖, 李云龙, 李记科 等. Q235碳钢在滨海盐土中的腐蚀形貌、产物及机理分析[J]. 材料工程, 2010, (8): 24
|
6 |
Research progress and development of marine corrosion protection technology[OL]. China Gateway to Corrosion and Protection,http://www.ecorr.org.cn/news/industry/2017-01-25/164483.html
|
6 |
海洋腐蚀防护技术的研究进展与发展[OL]. 中国腐蚀与防护网, http://www.ecorr.org.cn/news/industry/2017-01-25/164483.html
|
7 |
Hu M T, Ju P F, Zuo Y, et al. Failure process of zinc yellow epoxy/acrylic polyurethane composite coating for aluminum alloy under simulated marine environment[J]. Surf. Technol., 2018, 47(5): 57
|
7 |
胡明涛, 鞠鹏飞, 左 禹 等. 模拟海洋大气环境下铝合金表面锌黄环氧底漆/丙烯酸聚氨酯面漆涂层体系失效过程研究[J]. 表面技术, 2018, 47(5): 57
|
8 |
Liu F, Ren M, Zhang W S, et al. Study on protective coating used on aviation power products[J]. Mod. Paint Finish., 2021, 24(7): 26
|
8 |
刘 锋, 任 敏, 张武胜 等. 航空电源产品表面防护涂料基础研究[J]. 现代涂料与涂装, 2021, 24(7): 26
|
9 |
Shi F Y, Wang N, Yang Z. Anticorrosive design of electrical equipment for offshore wind power[J]. Electr. Age, 2021, (12): 36
|
9 |
史方颖, 汪 楠, 杨 哲. 海上风电用电气设备的防腐设计[J]. 电气时代, 2021, (12): 36
|
10 |
Liu H Y. Properties of basic lead silicate chromate and its potential to replace red Lead─Development of lead antirust pigment[J]. China Coat., 1994, (4): 28
|
10 |
刘会元. 盐基性硅铬酸铅的性能及其取代红丹的可能性─铅系防锈颜料的进展[J]. 中国涂料, 1994, (4): 28
|
11 |
Hao Y S, Liu F C, Han E H, et al. The mechanism of inhibition by zinc phosphate in an epoxy coating[J]. Corros. Sci., 2013, 69: 77
doi: 10.1016/j.corsci.2012.11.025
|
12 |
Alibakhshi E, Ghasemi E, Mahdavian M. Optimization of potassium zinc phosphate anticorrosion pigment by Taguchi experimental design[J]. Prog. Org. Coat., 2013, 76: 224
doi: 10.1016/j.porgcoat.2012.09.009
|
13 |
Sinko J. Challenges of chromate inhibitor pigments replacement in organic coatings[J]. Prog. Org. Coat., 2001, 42: 267
doi: 10.1016/S0300-9440(01)00202-8
|
14 |
Zubielewicz M, Gnot W. Mechanisms of non-toxic anticorrosive pigments in organic waterborne coatings[J]. Prog. Org. Coat., 2004, 49: 358
doi: 10.1016/j.porgcoat.2003.11.001
|
15 |
De Lima-Neto P, De Araújo A P, Araújo W S, et al. Study of the anticorrosive behaviour of epoxy binders containing non-toxic inorganic corrosion inhibitor pigments[J]. Prog. Org. Coat., 2008, 62: 344
doi: 10.1016/j.porgcoat.2008.01.012
|
16 |
Heydarpour M R, Zarrabi A, Attar M M, et al. Studying the corrosion protection properties of an epoxy coating containing different mixtures of strontium aluminum polyphosphate (SAPP) and zinc aluminum phosphate (ZPA) pigments[J]. Prog. Org. Coat., 2014, 77: 160
|
17 |
Zhou X M, Du H J, Ma H, et al. Facile preparation and characterization of zinc phosphate with self-assembled flower-like micro-nanostructures[J]. J. Phys. Chem. Solids, 2015, 78: 1
doi: 10.1016/j.jpcs.2014.10.020
|
18 |
Ye C H, Zheng Y F, Wang S Q, et al. In vitro corrosion and biocompatibility study of phytic acid modified WE43 magnesium alloy[J]. Appl. Surf. Sci., 2012, 258: 3420
doi: 10.1016/j.apsusc.2011.11.087
|
19 |
Chang W H, Qu B, Liao A D, et al. In vitro biocompatibility and antibacterial behavior of anodic coatings fabricated in an organic phosphate containing solution on Mg-1.0Ca alloys[J]. Surf. Coat. Technol., 2016, 289: 75
doi: 10.1016/j.surfcoat.2016.01.052
|
20 |
Wang R X. Effect of phytate on the protection performance of epoxy coating with rust[D]. Harbin: Harbin Engineering University, 2018
|
20 |
王荣祥. 植酸盐对环氧带锈涂装涂层防护性能影响的研究[D]. 哈尔滨: 哈尔滨工程大学, 2018
|
21 |
Wang Q, Shi W Z, Li X G. Corrosion inhibition of 16 Mn steel by phytic acid salt[J]. Mater. Prot., 2007, 40(2): 20
|
21 |
王 强, 时维振, 李晓光. 植酸盐对16锰钢缓蚀性能影响的研究[J]. 材料保护, 2007, 40(2): 20
|
22 |
Li J D. Effect of metal phytates on flame retardancy of epoxy resin[D]. Shenyang: Shenyang Aerospace University, 2020
|
22 |
李金都. 金属植酸盐对环氧树脂阻燃性能影响的研究[D]. 沈阳: 沈阳航空航天大学, 2020
|
23 |
Yuan A Q, Liao S, Tong Z F, et al. Synthesis of nanoparticle zinc phosphate dihydrate by solid state reaction at room temperature and its thermochemical study[J]. Mater. Lett., 2006, 60: 2110
doi: 10.1016/j.matlet.2005.12.082
|
24 |
Qi M L, Guan C S, Ru M M. Preparation and corrosion resistance of phytate conversion coating[J]. Mater. Prot., 2012, 45(1): 1
|
24 |
亓美玲, 管从胜, 茹淼焱. 植酸盐化学转化膜的制备及耐蚀性[J]. 材料保护, 2012, 45(1): 1
|
25 |
Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating[J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
|
25 |
师 超, 邵亚薇, 熊 义 等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40: 38
|
26 |
Li W Q, Shi L, Zhang J Y, et al. Double-layered surface decoration of flaky aluminum pigments with zinc aluminum phosphate and phytic acid-aluminum complexes for high-performance waterborne coatings[J]. Powder Technol., 2020, 362: 462
doi: 10.1016/j.powtec.2019.11.097
|
27 |
Xie X Q, Yuan T C, Yao Y, et al. Phytic acid-based hybrid complexes for improving the interfacial property and mildew-resistance of heat-treated bamboo[J]. Colloid. Surf., 2023, 659A: 130749
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|