Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 396-404     CSTR: 32134.14.1005.4537.2023.159      DOI: 10.11902/1005.4537.2023.159
  研究报告 本期目录 | 过刊浏览 |
植酸锌的制备及其对Q235钢腐蚀行为的影响
周兰欣1, 张丽萍1, 汤燕1, 陈柯宇1, 周剑军1, 师超1,2(), 邵亚薇2, 刘光明1
1.南昌航空大学 江西省金属材料微结构调控重点实验室 南昌 330063
2.哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
Preparation of Zinc Phytate and Its Effect on Corrosion Behavior of Carbon Steel
ZHOU Lanxin1, ZHANG Liping1, TANG Yan1, CHEN Keyu1, ZHOU Jianjun1, SHI Chao1,2(), SHAO Yawei2, LIU Guangming1
1.Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
2.College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
引用本文:

周兰欣, 张丽萍, 汤燕, 陈柯宇, 周剑军, 师超, 邵亚薇, 刘光明. 植酸锌的制备及其对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 396-404.
Lanxin ZHOU, Liping ZHANG, Yan TANG, Keyu CHEN, Jianjun ZHOU, Chao SHI, Yawei SHAO, Guangming LIU. Preparation of Zinc Phytate and Its Effect on Corrosion Behavior of Carbon Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 396-404.

全文: PDF(15703 KB)   HTML
摘要: 

采用磷酸、植酸、氯化锌制备磷酸锌和植酸锌,通过扫描电子显微镜(SEM)、能谱分析(EDS)、红外光谱(FT-IR)和热重(TG)等手段对制备的磷酸锌和植酸锌进行表征,通过滴定实验分析磷酸锌和植酸锌在水溶液中的溶解度。根据Tafel极化法、电化学阻抗法和腐蚀浸泡实验分析了磷酸锌和植酸锌浸出液中Q235钢的腐蚀特性。结果表明:制备的磷酸锌为非均匀大小的微米片状结构,厚度在0.5~1 μm之间,植酸锌为团聚状粉末状颗粒,粒径在2~5 μm之间;植酸锌在浸出2 h以后,溶液中植酸根含量达到饱和,对Q235钢的缓蚀效率约在90%,表现出良好的缓蚀性能。

关键词 Q235钢腐蚀植酸锌缓蚀性能    
Abstract

The performance-based study on anticorrosive pigment is of significance to the development of new pigment for anticorrosive coatings. Zinc phosphate and zinc phytate were prepared from phosphoric acid, phytic acid and zinc chloride. Then the two pigments were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), thermogravimetry analysis (TG) and infrared spectroscopy (FT-IR). The solubility of zinc phosphate and zinc phytate in aqueous solution was analyzed by titration test. The corrosion characteristics of Q235 carbon steel in extracting solutions of zinc phosphate and zinc phytate were examined respectively by Tafel polarization method, electrochemical impedance spectroscopy (EIS) and immersion test. The results showed that the zinc phosphate presents micron-sheet like structure of non-uniform size with thickness in the range of 0.5-1 μm, and the zinc phytate was agglomeration particle with a particle size of 2-5 μm. While after extracting for 2 h, the content of zinc phytate was basically saturated, and it showed that zinc phytate had excellent inhibition effect, which could slow down the corrosion of Q235 steel with inhibition efficiency up to about 90%.

Key wordsQ235 steel    corrosion    zinc phytate    inhibition performance
收稿日期: 2023-05-11      32134.14.1005.4537.2023.159
ZTFLH:  TG178  
基金资助:国家自然科学基金(52001155);江西省自然科学基金(20212BAB214038);博士启动基金(EA201901056)
通讯作者: 师超,E-mail: shichao@nchu.edu.cn,研究方向金属材料的腐蚀与防护
Corresponding author: SHI Chao, E-mail: shichao@nchu.edu.cn
作者简介: 周兰欣,女,2000年生,硕士生
图1  磷酸锌和植酸锌的表面形貌
图2  磷酸锌和植酸锌的FT-IR谱
图3  磷酸锌和植酸锌的TG曲线
Extracting time / hConcentration of Zn2+ / mol·L-1Concentration of PO43- / mol·L-1
Zinc phosphateZinc phytateZinc phosphateZinc phytate
15.42 × 10-63.58 × 10-43.61 × 10-63.58 × 10-4
21.23 × 10-57.69 × 10-48.20 × 10-67.69 × 10-4
46.90 × 10-58.13 × 10-44.60 × 10-58.13 × 10-4
86.92 × 10-59.01 × 10-44.61 × 10-59.01 × 10-4
表1  滴定数据及计算结果
图4  Q235钢电极在不同时间磷酸锌和植酸锌浸出液中的开路电位
图5  Q235钢电极在不同时间磷酸锌和植酸锌浸出液中的电化学阻抗谱
图6  等效电路图
ExtractExtracting time / hRs / Ω·cm2Ct / S·cm-2·s nnRt / Ω·cm2η
Zinc phosphate05.996.03 × 10-40.81196.91/
16.774.80 × 10-40.61389.8449.49%
27.473.30 × 10-40.72498.3360.49%
47.801.21 × 10-40.67526.7262.62%
87.782.57 × 10-40.74709.0172.23%
Zinc phytate05.9916.03 × 10-40.84196.91/
16.3752.30 × 10-40.711082.0081.80%
26.2462.69 × 10-40.671942.8289.87%
46.0783.83 × 10-40.651920.9189.98%
88.2333.10 × 10-40.702122.3090.72%
表2  Q235钢电极在不同浸出时间的磷酸锌和植酸锌溶液中EIS拟合结果
图7  Q235钢电极在不同时间浸出液中的Tafel曲线
ExtractExtracting time / hEcorr / VIcorr / A·cm-2η
Zinc phosphate0-0.7405.50 × 10-5/
1-0.4403.84 × 10-530.18%
2-0.4953.64 × 10-533.82%
4-0.5033.43 × 10-537.63%
8-0.5042.55 × 10-553.63%
Zinc phytate0-0.7405.50 × 10-5/
1-0.5623.35 × 10-693.91%
2-0.5822.49 × 10-695.47%
4-0.5392.55 × 10-695.36%
8-0.5432.50 × 10-695.45%
表3  磷酸锌和植酸锌不同浸出时间下Tafel拟合结果
图8  Q235钢在不同时间磷酸锌浸出液中浸泡后的腐蚀形貌
图9  Q235钢在不同时间植酸锌浸出液中浸泡后的腐蚀形貌
图10  Q235钢在不同浸出液中浸泡后的表面形貌
ElementZinc phosphateZinc phytate
C/14.15
O35.7430.21
P1.362.20
Fe61.4649.86
Zn1.443.58
表4  Q235钢在磷酸锌和植酸锌浸出液中腐蚀后的表面能谱结果 (atomic fraction / %)
1 Yang J H. A study on mechano-chemical behavior of marine anti-corrosive coating/carbon steel system[D]. Dalian: Dalian University of Technology, 2017
1 杨宏启. 海洋工程防腐涂层/碳钢体系的力学化学行为研究[D]. 大连: 大连理工大学, 2017
2 Wu F Y, Wang C, Zhang Y Z, et al. Corrosion status evaluation of carbon steel pipeline buried in open industrial water system of nuclear power plant[J]. Total Corros. Control, 2021, 35(10): 154
2 吴昉赟, 王 聪, 张彦召 等. 核电厂开式工业水系统埋地碳钢管道腐蚀行为研究[J]. 全面腐蚀控制, 2021, 35(10): 154
3 Yang H Y, Huang G Q, Yang Z H, et al. Study on the corrosion laws of 10 kinds of steel samples in the tidal range zone and total immersion zone in different marine environments[J]. Mater. Prot., 2021, 54(10): 1
3 杨海洋, 黄桂桥, 杨朝晖 等. 10种钢样在不同海水环境的潮差区和全浸区腐蚀规律研究[J]. 材料保护, 2021, 54(10): 1
4 He J X. Characteristics of atmospheric corrosion behavior of carbon steel in tropical marine atmosphere[D]. Beijing: China Academy of Machinery Science and Technology, 2008
4 何建新. 热带海洋大气环境下碳钢大气腐蚀行为规律特征[D]. 北京: 机械科学研究总院, 2008
5 Nie X H, Li Y L, Li J K, et al. Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil[J]. J. Mater. Eng., 2010, (8): 24
5 聂向晖, 李云龙, 李记科 等. Q235碳钢在滨海盐土中的腐蚀形貌、产物及机理分析[J]. 材料工程, 2010, (8): 24
6 Research progress and development of marine corrosion protection technology[OL]. China Gateway to Corrosion and Protection,http://www.ecorr.org.cn/news/industry/2017-01-25/164483.html
6 海洋腐蚀防护技术的研究进展与发展[OL]. 中国腐蚀与防护网, http://www.ecorr.org.cn/news/industry/2017-01-25/164483.html
7 Hu M T, Ju P F, Zuo Y, et al. Failure process of zinc yellow epoxy/acrylic polyurethane composite coating for aluminum alloy under simulated marine environment[J]. Surf. Technol., 2018, 47(5): 57
7 胡明涛, 鞠鹏飞, 左 禹 等. 模拟海洋大气环境下铝合金表面锌黄环氧底漆/丙烯酸聚氨酯面漆涂层体系失效过程研究[J]. 表面技术, 2018, 47(5): 57
8 Liu F, Ren M, Zhang W S, et al. Study on protective coating used on aviation power products[J]. Mod. Paint Finish., 2021, 24(7): 26
8 刘 锋, 任 敏, 张武胜 等. 航空电源产品表面防护涂料基础研究[J]. 现代涂料与涂装, 2021, 24(7): 26
9 Shi F Y, Wang N, Yang Z. Anticorrosive design of electrical equipment for offshore wind power[J]. Electr. Age, 2021, (12): 36
9 史方颖, 汪 楠, 杨 哲. 海上风电用电气设备的防腐设计[J]. 电气时代, 2021, (12): 36
10 Liu H Y. Properties of basic lead silicate chromate and its potential to replace red Lead─Development of lead antirust pigment[J]. China Coat., 1994, (4): 28
10 刘会元. 盐基性硅铬酸铅的性能及其取代红丹的可能性─铅系防锈颜料的进展[J]. 中国涂料, 1994, (4): 28
11 Hao Y S, Liu F C, Han E H, et al. The mechanism of inhibition by zinc phosphate in an epoxy coating[J]. Corros. Sci., 2013, 69: 77
doi: 10.1016/j.corsci.2012.11.025
12 Alibakhshi E, Ghasemi E, Mahdavian M. Optimization of potassium zinc phosphate anticorrosion pigment by Taguchi experimental design[J]. Prog. Org. Coat., 2013, 76: 224
doi: 10.1016/j.porgcoat.2012.09.009
13 Sinko J. Challenges of chromate inhibitor pigments replacement in organic coatings[J]. Prog. Org. Coat., 2001, 42: 267
doi: 10.1016/S0300-9440(01)00202-8
14 Zubielewicz M, Gnot W. Mechanisms of non-toxic anticorrosive pigments in organic waterborne coatings[J]. Prog. Org. Coat., 2004, 49: 358
doi: 10.1016/j.porgcoat.2003.11.001
15 De Lima-Neto P, De Araújo A P, Araújo W S, et al. Study of the anticorrosive behaviour of epoxy binders containing non-toxic inorganic corrosion inhibitor pigments[J]. Prog. Org. Coat., 2008, 62: 344
doi: 10.1016/j.porgcoat.2008.01.012
16 Heydarpour M R, Zarrabi A, Attar M M, et al. Studying the corrosion protection properties of an epoxy coating containing different mixtures of strontium aluminum polyphosphate (SAPP) and zinc aluminum phosphate (ZPA) pigments[J]. Prog. Org. Coat., 2014, 77: 160
17 Zhou X M, Du H J, Ma H, et al. Facile preparation and characterization of zinc phosphate with self-assembled flower-like micro-nanostructures[J]. J. Phys. Chem. Solids, 2015, 78: 1
doi: 10.1016/j.jpcs.2014.10.020
18 Ye C H, Zheng Y F, Wang S Q, et al. In vitro corrosion and biocompatibility study of phytic acid modified WE43 magnesium alloy[J]. Appl. Surf. Sci., 2012, 258: 3420
doi: 10.1016/j.apsusc.2011.11.087
19 Chang W H, Qu B, Liao A D, et al. In vitro biocompatibility and antibacterial behavior of anodic coatings fabricated in an organic phosphate containing solution on Mg-1.0Ca alloys[J]. Surf. Coat. Technol., 2016, 289: 75
doi: 10.1016/j.surfcoat.2016.01.052
20 Wang R X. Effect of phytate on the protection performance of epoxy coating with rust[D]. Harbin: Harbin Engineering University, 2018
20 王荣祥. 植酸盐对环氧带锈涂装涂层防护性能影响的研究[D]. 哈尔滨: 哈尔滨工程大学, 2018
21 Wang Q, Shi W Z, Li X G. Corrosion inhibition of 16 Mn steel by phytic acid salt[J]. Mater. Prot., 2007, 40(2): 20
21 王 强, 时维振, 李晓光. 植酸盐对16锰钢缓蚀性能影响的研究[J]. 材料保护, 2007, 40(2): 20
22 Li J D. Effect of metal phytates on flame retardancy of epoxy resin[D]. Shenyang: Shenyang Aerospace University, 2020
22 李金都. 金属植酸盐对环氧树脂阻燃性能影响的研究[D]. 沈阳: 沈阳航空航天大学, 2020
23 Yuan A Q, Liao S, Tong Z F, et al. Synthesis of nanoparticle zinc phosphate dihydrate by solid state reaction at room temperature and its thermochemical study[J]. Mater. Lett., 2006, 60: 2110
doi: 10.1016/j.matlet.2005.12.082
24 Qi M L, Guan C S, Ru M M. Preparation and corrosion resistance of phytate conversion coating[J]. Mater. Prot., 2012, 45(1): 1
24 亓美玲, 管从胜, 茹淼焱. 植酸盐化学转化膜的制备及耐蚀性[J]. 材料保护, 2012, 45(1): 1
25 Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating[J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
25 师 超, 邵亚薇, 熊 义 等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40: 38
26 Li W Q, Shi L, Zhang J Y, et al. Double-layered surface decoration of flaky aluminum pigments with zinc aluminum phosphate and phytic acid-aluminum complexes for high-performance waterborne coatings[J]. Powder Technol., 2020, 362: 462
doi: 10.1016/j.powtec.2019.11.097
27 Xie X Q, Yuan T C, Yao Y, et al. Phytic acid-based hybrid complexes for improving the interfacial property and mildew-resistance of heat-treated bamboo[J]. Colloid. Surf., 2023, 659A: 130749
[1] 柳泽邦, 冉博元, 裴恒, 罗凯林, 赵智斌, 韩鹏, 强玉杰. 金属铝用复配缓蚀剂协同缓蚀作用研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 312-322.
[2] 柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[3] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[4] 李国新, 陈华湘, 伍扬帆. CSA-OPC基修补材料的耐海水腐蚀性及其机理研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 462-470.
[5] 邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[6] 张运军, 蒋有伟, 张忠义, 吕乃欣, 陈君伟, 连国锋. 3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[7] 龙梦翔, 付桂翠, 万博, 张钟庆. 基于K-means++聚类算法和SSIM指标的金属板材腐蚀区域识别[J]. 中国腐蚀与防护学报, 2024, 44(2): 437-444.
[8] 李文杰, 车晓钰, 唐永存, 刘光明, 田文明, 何华林, 刘晨辉. 塑性变形加工对纯锌在天津土壤浸出液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
[9] 司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[10] 王智慧, 吴雷, 姜懿珊, 张弦, 万响亮, 李光强, 吴开明. 形变强化和逆相变细晶强化对Fe-18Cr-8Ni钢耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 429-436.
[11] 郭诗雯, 吴浩志, 董绍华, 陈林, 程玉峰. 含双腐蚀缺陷管道的氢浓度分布模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 335-344.
[12] 李婷玉, 魏洁, 陈楠, 万晔, 董俊华. 用于大气环境的电化学传感器的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 365-371.
[13] 裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[14] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[15] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.