Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1015-1021     CSTR: 32134.14.1005.4537.2022.318      DOI: 10.11902/1005.4537.2022.318
  研究报告 本期目录 | 过刊浏览 |
海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响
汪洋1, 刘元海2, 慕仙莲2, 刘淼然1(), 王俊1, 李秋平2, 陈川1
1.中国电器科学研究院股份有限公司 工业产品环境适应性国家重点实验室 广州 510300
2.中国特种飞行器研究所 结构腐蚀防护与控制航空科技重点实验室 荆门 448035
Effect of Environmental Factors on Material Transfer in Thin Liquid Film During Atmospheric Corrosion Process in Marine Environment
WANG Yang1, LIU Yuanhai2, MU Xianlian2, LIU Miaoran1(), WANG Jun1, LI Qiuping2, CHEN Chuan1
1.China National Electric Apparatus Research Institute Co., Ltd., State Key Laboratory of Environmental Adaptability for Industrial Products, Guangzhou 510300, China
2.China Special Vehicle Reserch Institute, Key Laboratory of Corrosion Protection and Control of Aviation Technology, Jingmen 448035, China
全文: PDF(2462 KB)   HTML
摘要: 

通过多因素正交试验模拟了湿热海洋环境下受盐雾影响的金属大气腐蚀过程,研究了稳态环境条件下表面覆盖薄液膜的Cu腐蚀机理。根据温度、湿度等环境条件计算了液膜的状态变化,分析了不同厚度与Cl-浓度的薄液膜下溶解氧的迁移过程,最终通过对比试验与理论计算结果,揭示了环境因素对薄液膜尺寸、浓度等状态与腐蚀传质动力学过程的影响关系。

关键词 大气腐蚀环境因子物质传递腐蚀模型Cu    
Abstract

The occurrence of atmospheric corrosion is always companied initially with the formation of electrolyte film on the surface of metals, and then the corrosion process is affected by soluble substances such as oxygen from the surrounding environment and the nature of metals themselves. The process of atmospheric corrosion reaction relates to the phase transition of the gas, solid, and liquid substance, as well as the material transfer among different phases. This study simulated the atmospheric corrosion process of the pure copper plate in humid and hot environmental conditions as well as sea fog atmosphere by the multi-factor orthogonal corrosion test. The corrosion mechanism of copper plates beneath thin liquid films in steady state environment was also studied. By calculating the state changes of the thin liquid film with the variation of temperature, humidity and other environmental conditions, the migration process of dissolved oxygen within the thin liquid films of different thicknesses and Cl- concentrations was analyzed. The influence of environmental factors on the thin liquid film, electrolyte concentration, and corrosion kinetics was revealed eventually by comparing the experimental data and theoretical calculation results.

Key wordsatmospheric corrosion    environmental factor    material transfer    corrosion model    copper
收稿日期: 2022-10-14      32134.14.1005.4537.2022.318
ZTFLH:  TG171  
通讯作者: 刘淼然,E-mail: liumr@cei1958.com,研究方向为腐蚀与防护   
Corresponding author: LIU Miaoran, E-mail: liumr@cei1958.com   
作者简介: 汪洋,男,1994年生,硕士生

引用本文:

汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
WANG Yang, LIU Yuanhai, MU Xianlian, LIU Miaoran, WANG Jun, LI Qiuping, CHEN Chuan. Effect of Environmental Factors on Material Transfer in Thin Liquid Film During Atmospheric Corrosion Process in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1015-1021.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.318      或      https://www.jcscp.org/CN/Y2023/V43/I5/1015

No.T / °CRHCdep / g·m-2
16095%0.2
25085%0.2
36085%1
表 1  大气腐蚀正交试验环境因素条件
图1  正交试验样品模式图
图 2  不同环境条件下金属失重量与时间变化
图3  腐蚀速率与时间变化关系

Temperature

°C

Relative humidityAmount of salt deposition

Concentration

of NaCl

Density

kg·m-3

Salinity

mass

Liquid film thicknessOxygen solubility
g·m-2kmol·m-3μmmol·m-3
6095%0.21.0471024.2825.975%3.2680.0880
5085%0.23.1771109.08716.743%1.0770.0611
6085%13.1411103.06316.645%5.4460.0547
表2  不同环境条件下NaCl潮解液膜性质状态
图4  电解质液膜中氧的溶解与扩散变化及反应示意图
图5  浓度随扩散距离的变化
图6  不同条件下暴露不同时间后Cu腐蚀速率的理论计算值与实测值
1 Soares C G, Garbatov Y, Zayed A, et al. Influence of environmental factors on corrosion of ship structures in marine atmosphere [J]. Corros. Sci., 2009, 51: 2014
doi: 10.1016/j.corsci.2009.05.028
2 Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
2 万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851
3 Rice D W, Peterson P, Rigby E B, et al. Atmospheric corrosion of copper and silver [J]. J. Electrochem. Soc., 1981, 128: 275
doi: 10.1149/1.2127403
4 Biezma M V, San Cristóbal J R. Methodology to study cost of corrosion [J]. Corros. Eng. Sci. Technol., 2005, 40: 344
doi: 10.1179/174327805X75821
5 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
5 崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
6 Christofer L, Thomas E G. Atmospheric Corrosion [M]. Beijing: Chemical Industry Press, 1996
7 Ma X Z, Meng L D, Cao X K, et al. Influence of Co-deposition of pollutant particulates ammonium sulfate and sodium chloride on atmospheric corrosion of copper of printed circuit board [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 540
7 马小泽, 孟令东, 曹祥康 等. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制 [J]. 中国腐蚀与防护学报, 2022, 42: 540
doi: 10.11902/1005.4537.2021.138
8 Wang X, Chen J H, Wang W. Review of study in hygroscopic properties of aerosol particles [J]. China Powder Sci. Technol., 2010, 16(1): 101
8 王 轩, 陈建华, 王 玮. 气溶胶吸湿特性研究现状 [J]. 中国粉体技术, 2010, 16(1): 101
9 State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 19292.4-2018 Corrosion of metals and alloys—Corrosivity of atmospheres—Part 4: Determination of corrosion rate of standard specimens for the evaluation of corrosivity [S]. Beijing: Standards Press of China, 2018
9 国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 19292.4-2018 金属和合金的腐蚀 大气腐蚀性 第4部分: 用于评估腐蚀性的标准试样的腐蚀速率的测定 [S]. 北京: 中国标准出版社, 2018
10 ISO 9224-2012 Corrosion of metals and alloys—Corrosivity of atmospheres—Guiding values for the corrosivity categories [S]. Geneva: ISO copyright office, 2012
11 China National Electric Apparatus Research Institute Co., Ltd. Prediction algorithm of metal atmospheric corrosion rate based on transmission dynamics model [P]. Chin Pat, 2020114294241, 2022
11 中国电器科学研究院股份有限公司. 基于物质传递动力学模型的金属大气腐蚀速率预测算法 [P]. 中国专利, 2020114294241, 2022
12 Xi H. Equation for calculating physical properties of sodium chloride solutions [J]. J. Tianjin Univ. Light Ind., 1997, (2): 74
12 席 华. 氯化钠溶液物性关系式 [J]. 天津轻工业学院学报, 1997, (2): 74
13 Cui X M, Wu Z M. Discrimination on concept of salt effect [J]. J. Salt Lake Res., 2013, 21(2): 62
13 崔香梅, 乌志明. 盐效应概念辨析 [J]. 盐湖研究, 2013, 21(2): 62
14 Ma C F, Tian R. The oxygen saturability of sea water and Weiss equation [J]. J. Ocean Technol., 2002, 21(1): 22
14 马传芳, 田 锐. 海水的氧饱和度与韦斯方程 [J]. 海洋技术, 2002, 21(1): 22
15 Shinzo O, Shiro Y, Fumio H, et al. Interaction between diffusion process and electrode reaction process under convection conditions [J]. Electrochemistry, 1957, 25: 562
16 Zhang J W. Study on the oxygen budgets of grass carp ponds and its critical impact factors [D]. Shanghai: Shanghai Ocean University, 2012
16 张敬旺. 草鱼养殖池塘溶氧收支平衡及关键影响因子的研究 [D]. 上海: 上海海洋大学, 2012
17 Nippon Steel Corp. Metal corrosion rate prediction method and metal corrosion life prediction system [P]. Jap. Pat., JP2012083140A, 2012
18 Frankel G S, Stratmann M, Rohwerder M, et al. Potential control under thin aqueous layers using a Kelvin Probe [J]. Corros. Sci., 2007, 49: 2021
doi: 10.1016/j.corsci.2006.10.017
19 Huang H L, Dong Z H, Chen Z Y, et al. The effects of Cl ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1230
doi: 10.1016/j.corsci.2010.12.018
20 Deng P C, Zhong J, Wang K, et al. Important influential factor for corrosion of high-altitude marine engineering equipment in atmosphere-chloride ion deposition rate [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 474
20 邓培昌, 钟 杰, 王 坤 等. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究 [J]. 中国腐蚀与防护学报, 2020, 40: 474
doi: 10.11902/1005.4537.2019.206
21 Vera R, Delgado D, Rosales B M. Effect of atmospheric pollutants on the corrosion of high power electrical conductors-Part 2. Pure copper [J]. Corros. Sci., 2007, 49: 2329
doi: 10.1016/j.corsci.2006.10.031
22 Vera R, Delgado D, Rosales B M. Effect of unusually elevated SO2 atmospheric content on the corrosion of high power electrical conductors-Part 3. Pure copper [J]. Corros. Sci., 2008, 50: 1080
doi: 10.1016/j.corsci.2007.11.017
[1] 石践, 胡学文, 何博, 浦红, 郭锐, 汪飞. 经济型高耐候钢耐大气腐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[2] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[3] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[4] 倪雅, 施方长, 戚继球. Ce添加对Zn-0.6Cu-0.3Ti合金组织与耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[5] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[6] 杨新宇, 李祯, 段体岗, 黄国胜, 马力, 刘峰, 姜丹. 70Cu-30Ni合金管FeSO4预成膜及冲刷腐蚀行为分析[J]. 中国腐蚀与防护学报, 2023, 43(3): 561-568.
[7] 李乐民, 张洁, 卞亚飞, 缪春辉, 陈国宏, 汤文明. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
[8] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[9] 周梦鑫, 吴军, 樊志彬, 周学杰, 陈昊. 大气腐蚀在线监测技术研究现状与展望[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.
[10] 夏晓健, 万芯瑗, 高燕, 王启伟, 严康骅, 陈云翔, 洪毅成, 张俊喜. 1050铝合金在通电工况下大气腐蚀的腐蚀特征[J]. 中国腐蚀与防护学报, 2022, 42(6): 1065-1069.
[11] 王雷, 董俊华, 顾怀章, 柯伟. 含铜耐候钢热轧开裂现象分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 845-850.
[12] 田卫平, 郭良帅, 王宇航, 周鹏, 张涛. Cu/Ag活化对微弧氧化涂层表面化学镀层生长及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
[13] 范益, 杨文秀, 王军, 蔡佳兴, 马宏驰. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[14] 马小泽, 孟令东, 曹祥康, 肖松, 董泽华. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[15] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.