Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1003-1014     CSTR: 32134.14.1005.4537.2022.284      DOI: 10.11902/1005.4537.2022.284
  研究报告 本期目录 | 过刊浏览 |
两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究
肖文涛1, 刘静1(), 彭晶晶1, 张弦1, 吴开明1,2()
1.武汉科技大学 高性能钢铁材料及其应用省部共建协同创新中心 耐火材料与冶金省部共建国家重点实验室 冶金工业过程系统科学湖北省重点实验室 武汉 430081
2.材谷金带 (佛山) 金属复合材料有限公司 佛山 528000
Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment
XIAO Wentao1, LIU Jing1(), PENG Jingjing1, ZHANG Xian1, WU Kaiming1,2()
1.Collaborative Innovation Center for Advanced Steels, The State Key Laboratory of Refractory Material and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
2.Metals Valley & Band (Foshan) Metallic Composite Co. Ltd., Foshan 528000, China
全文: PDF(23269 KB)   HTML
摘要: 

采用电弧喷涂技术在EH36钢表面制备了5083铝合金涂层和Zn15Al涂层,结合扫描电子显微镜 (SEM)、X射线衍射仪 (XRD)、电化学测试和腐蚀失重等方法对比研究了两种涂层在中性盐雾环境下的耐蚀性能。结果表明,随着腐蚀的进行,两种涂层的腐蚀速率均逐渐下降,且5083Al合金涂层的腐蚀速率明显低于Zn15Al涂层。形貌观察结果表明,5083铝合金涂层的腐蚀产物呈致密块状,Cl-无明显渗入;而Zn15Al涂层的腐蚀产物呈疏松的细针状,盐雾腐蚀10 d后有Cl-沉积在腐蚀产物层中并逐渐渗入至涂层基体。5083铝合金涂层的腐蚀产物主要为Al(OH)3,Zn15Al涂层腐蚀产物主要由Zn(OH)2和Zn5(OH)8Cl2·H2O组成。结合溶度积常数Ksp和过饱和度的理论计算,Al(OH)3沉积所需Al3+浓度更低、沉积速度更快,因此5083铝合金涂层更倾向于形成致密的腐蚀产物层。这一结果与电化学阻抗谱 (EIS) 测试结果相吻合,随腐蚀时间延长,两种涂层的极化电阻逐渐增大,且5083铝合金涂层的极化电阻高于Zn15Al涂层,说明腐蚀产物致密性是影响两种涂层耐蚀性能的主要原因。

关键词 电弧喷涂5083Al涂层Zn15Al涂层盐雾腐蚀性能    
Abstract

The 5083 Al-alloy coating (5083 coating) and Zn15Al coating were prepared on the surface of EH36 steel by arc spraying technology, and the corrosion resistance of the two coatings in neutral salt spray environment was comparatively studied by means of mass loss method, electrochemical tests, SEM and XRD etc. The results show that, with the progress of corrosion, the corrosion rate of the two coatings gradually decreases, and the corrosion rate of 5083 Al-alloy coating is significantly lower than that of Zn15Al coating. The morphological observations show that the corrosion products of 5083 Al-alloy coatings are dense and blocky, and there is no obvious infiltration of Cl-. However, the corrosion products of Zn15Al coatings are loose and fine needle-like, and Cl- is deposited in the corrosion product layer after 10 d of salt spray corrosion and then gradually penetrates into the coating matrix. The corrosion products of 5083 Al-alloy coating are mainly Al(OH)3, and those of Zn15Al coating composed mainly of Zn(OH)2 and Zn5(OH)8Cl2·H2O. Taking the calculation results of the solubility product constant Kspand supersaturation into consideration, it follows that the deposition of Al(OH)3 requires a lower Al3+ concentration and presents a faster deposition rate. Therefore, the 5083 coating is more inclined to form a dense layer of corrosion products. This result is verified by the EIS test results. As corrosion time prolongs, the polarization resistance of the two coatings gradually increases, and the polarization resistance of the 5083 Al-alloy coating is higher than that of the Zn15Al coating, indicating that the densification of corrosion products is the main reason affecting the corrosion resistance of the two coatings.

Key wordsarc spray coating    Al-alloy coating    Zn15Al coating    corrosion resistances of salt spray
收稿日期: 2022-09-14      32134.14.1005.4537.2022.284
ZTFLH:  TG174  
基金资助:湖北省教育厅科学技术研究计划重点项目(D20221103);冶金工业过程系统科学湖北省重点实验室开放基金(Y202204)
通讯作者: 刘静,E-mail: liujing2015@wust.edu.cn,研究方向为金属材料深海腐蚀与防护;吴开明,E-mail: wukaiming@wust.edu.cn,研究方向为高强钢铁材料及其防护   
Corresponding author: LIU Jing, E-mail: liujing2015@wust.edu.cn;WU Kaiming, E-mail: wukaiming@wust.edu.cn   
作者简介: 肖文涛,男,1998年生,硕士生

引用本文:

肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1003-1014.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.284      或      https://www.jcscp.org/CN/Y2023/V43/I5/1003

MaterialZnAlMgSiFeMnTi
5083 Al-alloy0.01897.272.530.0250.120.0260.011
Zn15Al86.4413.5390.0010.0050.0070.0040.004
表1  丝材化学成分 (mass fraction / %)
CoatingThickness / μm

Hardness HV0.3

kgf·mm-2

Binding strength / MPaPorosity / %
5083 Al-alloy195.3±10.543.32±1.3517.61±1.604.19±0.58
Zn15Al178.4±13.233.90±0.829.60±0.604.34±0.89
表2  5083铝合金和Zn15Al涂层物理性能
图1  中性盐雾环境下两种涂层的腐蚀速率
图2  5083铝合金和Zn15Al涂层在中性盐雾环境下的表面宏观腐蚀形貌
图3  中性盐雾环境下5083铝合金和Zn15Al涂层表面微观腐蚀形貌
图4  中性盐雾环境下5083铝合金涂层截面微观腐蚀形貌
图5  中性盐雾环境下Zn15Al涂层截面形貌
Coating1 d2 d5 d10 d20 d30 d100 d
5083---8.6312.1727.5241.8
Zn15Al-10.4313.8611.8715.6517.55223.03
表3  中性盐雾环境下腐蚀产物层厚度
图6  中性盐雾环境下腐蚀100 d后两种涂层的XRD谱
图7  5083铝合金涂层电化学阻抗谱及等效电路
图8  Zn15Al涂层电化学阻抗谱及拟合电路
t / d

Rs

Ω·cm2

Qc

S·cm-2·s n

Rc

Ω·cm2

Qct

S·cm-2·s n

Rct

Ω·cm2

Rp

Ω·cm2

11.0715.11×10-3286.51.41×10-267.23354.80
21.8522.44×10-32.5321.91×10-3122.2126.58
51.6063.11×10-30.16651.52×10-111231124.77
100.64912.35×10-324.626.6×10-412581283.27
200.59681.77×10-41.1632.46×10-315641565.76
303.1912.2×10-321.577.81×10-422042228.76
表4  5083铝合金涂层EIS拟合结果
t / d

Rs

Ω·cm2

Qc

S·cm-2·s n

Rc

Ω·cm2

Qct

S·cm-2·s n

Rct

Ω·cm2

Rp

Ω·cm2

14.0893.16×10-23.7243.0×10-2193.7199.14
22.5442.43×10-2251.91.40×10-27.277260.85
51.2221.26×10-2112.86.45×10-356.23170.86
100.79726.81×10-31.8131.22×10-2712715.65
205.8267.23×10-329.711.14×10-2751782.55
305.9557.80×10-316.757.49×10-3918.4937.27
表5  Zn15Al涂层EIS拟合结果
图9  中性盐雾环境下两种涂层的极化电阻对比
图10  Al(OH)3和Zn(OH)2的过饱和度
1 Liu S, Wang Y P, Wang S F. Several discussions on metal corrosion and protection [J]. Mod. chem. Res., 2022, (09): 23
1 刘 帅, 王艺澎, 王少峰. 金属腐蚀与防护问题的若干探讨 [J]. 当代化工研究, 2022, (09): 23
2 Xie C F. Introduction to metal corrosion principle and protection [J]. Total Corros. Control, 2019, 33(07): 18
2 谢春峰. 金属腐蚀原理及防护简介[J]. 全面腐蚀控制, 2019, 33(07): 18
3 Wang Y X, Zhang Y, Zhang C M, et al. The development and application of arc spraying technology [J]. Agric. Equip. Veh. Eng., 2010, (03): 26
3 王有喜, 张 勇, 张春明 等. 电弧喷涂技术的发展及应用 [J]. 农业装备与车辆工程, 2010, (03): 26
4 Zeng Z, Sakoda N, Tajiri T. Corrosion behavior of wire-arc-sprayed stainless steel coating on mild steel [J]. J. Therm. Spray Technol., 2006, 15: 431
doi: 10.1361/105996306X124446
5 Chen T C, Chou C C, Yung T Y, et al. Wear behavior of thermally sprayed Zn/15Al, Al and Inconel 625 coatings on carbon steel [J]. Surf. Coat. Technol., 2016, 303: 78
doi: 10.1016/j.surfcoat.2016.03.095
6 Rogers F S. Thermal spray for commercial shipbuilding [J]. J. Therm. Spray Technol., 1997, 6: 291
doi: 10.1007/s11666-997-0060-2
7 Wood R J K, Speyer A J. Erosion-corrosion of candidate HVOF aluminium-based marine coatings [J]. Wear, 2004, 256: 545
doi: 10.1016/S0043-1648(03)00564-7
8 Soechting F O. A design perspective on thermal barrier coatings [J]. J. Therm. Spray Technol., 1999, 8: 505
doi: 10.1361/105996399770350179
9 Toma D, Brandl W, Marginean G. Wear and corrosion behaviour of thermally sprayed cermet coatings [J]. Surf. Coat. Technol., 2001, 138: 149
doi: 10.1016/S0257-8972(00)01141-5
10 Wang B Q. Erosion-corrosion of thermal sprayed coatings in FBC boilers [J]. Wear, 1996, 199: 24
doi: 10.1016/0043-1648(96)06972-4
11 Hermanek F J. Automation of the thermal spray process [J]. SAE Trans., 1982, 91: 2213
12 Jandin G, Liao H, Feng Z Q, et al. Correlations between operating conditions, microstructure and mechanical properties of twin wire arc sprayed steel coatings [J]. Mater. Sci. Eng., 2003, 349A: 298
13 Chaliampalias D, Vourlias G, Pavlidou E, et al. High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings [J]. Appl. Surf. Sci., 2008, 255: 3104
doi: 10.1016/j.apsusc.2008.08.101
14 Choe H B, Lee H S, Shin J H. Experimental study on the electrochemical anti-corrosion properties of steel structures applying the arc thermal metal spraying method [J]. Materials, 2014, 7: 7722
doi: 10.3390/ma7127722
15 Paredes R S C, Amico S C, d'Oliveira A S C M. The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying [J]. Surf. Coat. Technol., 2006, 200: 3049
doi: 10.1016/j.surfcoat.2005.02.200
16 Schmidt D P, Shaw B A, Sikora E, et al. Corrosion protection assessment of barrier properties of several zinc-containing coating systems on steel in artificial seawater [J]. Corrosion, 2006, 62: 323
doi: 10.5006/1.3280665
17 Hudson J C, Stanners J F. The effect of climate and atmospheric pollution on corrosion [J]. J. Appl. Chem., 1953, 3: 86
doi: 10.1002/jctb.5010030208
18 Hoar T P, Radovici O. Zinc-aluminium sprayed coatings [J]. Trans. IMF, 1964, 42: 211
doi: 10.1080/00202967.1964.11869929
19 Kuroda S, Kawakita J, Takemoto M. An 18-year exposure test of thermal-sprayed Zn, Al, and Zn-Al coatings in marine environment [J]. Corrosion, 2006, 62: 635
doi: 10.5006/1.3280677
20 Büteführ M. Zinc-aluminium-coatings as corrosion protection for steel [J]. Mater. Corros., 2007, 58: 721
doi: 10.1002/(ISSN)1521-4176
21 Jiang Q, Miao Q, Liang W P, et al. Corrosion behavior of arc sprayed Al-Zn-Si-RE coatings on mild steel in 3.5% NaCl solution [J]. Electrochim. Acta, 2014, 115: 644
doi: 10.1016/j.electacta.2013.09.156
22 Xiao Y X, Jiang X H, Xiao Y D, et al. Research on Zn-Al15 thermal spray metal coating and its organic painting composite system protection performance [J]. Proc. Eng., 2012, 27: 1644
doi: 10.1016/j.proeng.2011.12.632
23 Asgari H, Toroghinejad M R, Golozar M A. Effect of coating thickness on modifying the texture and corrosion performance of hot-dip galvanized coatings [J]. Curr. Appl. Phys., 2009, 9: 59
doi: 10.1016/j.cap.2007.10.090
24 State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 9790-2021 Metallic materials—Vickers and Knoop microhardness tests of metallic and other inorganic coatings [S]. Beijing: Standards Press of China, 2021
24 国家市场监督管理总局, 国家标准化管理委员会. GB/T 9790-2021 金属材料 金属及其他无机覆盖层的维氏和努氏显微硬度试验 [S]. 北京: 中国标准出版社, 2021
25 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.GB/T 8642-2002Thermal spraying--Determiantion of tensile adhesive strength [S]. Beijing: Standards Press of China, 2003
25 中华人民共和国国家质量监督检验检疫总局. GB/T 8642-2002 热喷涂 抗拉结合强度的测定 [S]. 北京: 中国标准出版社, 2003
26 State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 10125-2021 Corrosion tests in artificial atmospheres—Salt spray tests [S]. Beijing: Standards Press of China, 2021
26 国家市场监督管理总局, 国家标准化管理委员会. GB/T 10125-2021 人造气氛腐蚀试验 盐雾试验 [S]. 北京: 中国标准出版社, 2021
27 State Administration of Machinery Industry, Instrument Functional Materials Standardization Technical Committee. JB/T 7901-1999 Metals materials-Uniform corrosion - Methods of laboratory immersion testing [S]. Beijing: China Machine Press, 2004
27 国家机械工业局, 仪表功能材料标准化技术委员会. JB/T 7901-1999 金属材料实验室均匀腐蚀全浸试验方法 [S]. 北京: 机械工业出版社, 2004
28 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 16545-2015 Corrosion of metals and alloys-Removal of corrosion products from corrosion test specimens [S]. Beijing: Standards Press of China, 2016
28 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 16545-2015 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除 [S]. 北京: 中国标准出版社, 2016
29 Wang F. Corrosion bahaviors of Zn, Al, and ZnAl coatings in simulated deep-ocean environment [D]. Qingdao: China University of Petroleum (East China), 2015
29 王 芳. 电弧喷涂Zn、Al、ZnAl涂层在模拟深海环境下的腐蚀行为研究 [D]. 青岛: 中国石油大学(华东), 2015
30 Liu W, Lan Z, He L Z. Types and source of inclusions in 5182 aluminum alloy melt [J]. Light Alloy Fabr. Technol., 2018, 46(3): 15
30 刘 旺, 兰 政, 何立子. 5182 铝合金熔体夹渣物种类及其来源研究 [J]. 轻合金加工技术, 2018, 46(3): 15
31 Chen W P. Study on reaction behavior of in-situ MgAl2O4 spinel formation [D]. Suzhou: Soochow University, 2017
31 陈伟鹏. 氧化镁—氧化铝原位合成镁铝尖晶石反应行为的研究 [D]. 苏州: 苏州大学, 2017
32 Grilli R, Baker M A, Castle J E, et al. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution [J]. Corros. Sci., 2010, 52: 2855
doi: 10.1016/j.corsci.2010.04.035
33 Yin Q. Study on the corrosion mechanism of zinc with different influence factors in simulated atmosphere [D]. Hefei: University of Science and Technology of China, 2019
33 尹 奇. 模拟大气环境下不同影响因子对锌腐蚀的作用机制研究 [D]. 合肥: 中国科学技术大学, 2019
34 Rodriguez J J S, Álvarez C M, Gonzáalez J E G. EIS characterisation of the layer of corrosion products on various substrates in differing atmospheric environments [J]. Mater. Corros., 2006, 57: 350
doi: 10.1002/(ISSN)1521-4176
35 Odnevall I, Leygraf C. Formation of NaZn4Cl (OH)6SO4·6H2O in a marine atmosphere [J]. Corros. Sci., 1993, 34: 1213
doi: 10.1016/0010-938X(93)90082-R
36 Gao W B. Sensitization behavior and environmentally assisted cracking of AA5083-H128 Al-Mg navy alloy [D]. Tianjin: Tianjin University, 2018
36 高文斌. 船舰用铝镁合金AA5083-H128的敏化析出行为和环境敏感断裂 [D]. 天津: 天津大学, 2018
37 Ren J M, Ma J B, Zhang J, et al. Electrochemical performance of pure Al, Al-Sn, Al-Mg and Al-Mg-Sn anodes for Al-air batteries [J]. J. Alloy. Compd., 2019, 808: 151708
doi: 10.1016/j.jallcom.2019.151708
38 Dean J A. Lange's Handbook of Chemistry [M]. 13th ed. New York: McGraw-Hill, 1985
39 Zhang S, Liu J, Tang M, et al. Role of rare earth elements on the improvement of corrosion resistance of micro-alloyed steels in 3.5% NaCl solution [J]. J. Mater. Res. Technol., 2021, 11: 519
doi: 10.1016/j.jmrt.2021.01.041
[1] 刘存,赵卫民,艾华,王勇,董立先. 电弧喷涂铝涂层的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2011, 31(1): 62-67.
[2] 刘慧芳; 高瑾; 李晓刚; 吴俊升 . 高速电弧喷涂FeCrAl涂层和3Cr13涂层的冲刷腐蚀性能[J]. 中国腐蚀与防护学报, 2008, 28(4): 225-230 .
[3] 孟凡军 . 高速电喷涂Fe-Al在800℃下的氧化性能[J]. 中国腐蚀与防护学报, 2004, 24(6): 368-371 .
[4] 沈承金; 孙智; 易春龙 . 钢桥面二次雾化电弧喷涂防腐蚀设备和技术的研究[J]. 中国腐蚀与防护学报, 2004, 24(2): 125-127 .