Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 377-383     CSTR: 32134.14.1005.4537.2022.149      DOI: 10.11902/1005.4537.2022.149
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为
刘欢欢1, 刘光明1(), 李富天1, 孟令奇2, 夏侯俊招2, 顾佳磊2
1.南昌航空大学材料科学与工程学院 南昌 330063
2.上海电气核电设备有限公司 上海 201306
Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃
LIU Huanhuan1, LIU Guangming1(), LI Futian1, MENG Lingqi2, XIAHOU Junzhao2, GU Jialei2
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.Shanghai Electric Nuclear Power Equipment Co. Ltd., Shanghai 201306, China
全文: PDF(5780 KB)   HTML
摘要: 

研究了TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为。采用恒温氧化法测试了TP439不锈钢在800 ℃高温水蒸气中的氧化动力学曲线。通过场发射电子扫描显微镜 (FE-SEM) 观察试样氧化后的形貌,采用能谱分析 (EDS) 及X射线衍射 (XRD) 分析膜层的表面成分及相结构。结果表明:TP439不锈钢在初期阶段的氧化速率较快,氧化动力学符合线性氧化规律,线性速率常数kl为5.21×10-2 mg/(cm2·h),氧化过程受界面反应控制;随着氧化时间的增加氧化膜逐渐变厚,第二阶段的氧化动力学遵循抛物线规律,抛物线速率常数kp为1.54×10-3 mg2/(cm4·h),氧化速率的控制步骤由界面反应控制转为扩散控制。TP439不锈钢氧化产物的主要成分为 (Cr,Fe)2O3和少量的Cr2O3、Fe2O3、FeCr2O4尖晶石氧化物。在氧化初期阶段,试样表面沿晶界处分布的氧化物颗粒较多,这是由于晶界是元素快速扩散通道,表面沿晶界生成网状氧化物。

关键词 TP439不锈钢高温氧化水蒸气氧化动力学    
Abstract

The oxidation behavior of TP439 stainless steel in water vapor was studied by means of intermittent weighing method, field emission scanning electron microscope (FE-SEM) and X-ray diffractometer. In the initial oxidation stage, the formed oxide scale of TP439 stainless steel is very thin, the oxidation rate is fast, the oxidation kinetics conforms to the linear oxidation law with a linear rate constant kl of 5.214×10-2, the oxidation process is controlled by the interface reaction; with the increase of oxidation time, the oxide scale gradually thickens, which hinders the inward diffusion of oxygen ions and the outward diffusion of metal ions, the control step of the oxidation process is changed from interface reaction control to diffusion control; the oxidation kinetics in the second stage follows a parabolic law with a parabolic rate constant kp of 1.54×10-3, the oxidation control step is diffusion control. The main components of TP439 stainless steel oxidation products are (Cr, Fe)2O3 and a small amount of Cr2O3, Fe2O3, FeCr2O4 spinel oxides. In the early stage of oxidation, there are more oxide particles distributed along the grain boundary on the surface of the steel. This is because the grain boundary is the fast diffusion channel of elements, therefore, network-like oxides along the grain boundary emerges on the steel surface.

Key wordsTP439 stainless steel    high temperature oxidation    water vapor    oxidation kinetics
收稿日期: 2022-05-13      32134.14.1005.4537.2022.149
ZTFLH:  TG172  
基金资助:国家自然科学基金(51961028)
作者简介: 刘欢欢,女,1996年生,硕士生

引用本文:

刘欢欢, 刘光明, 李富天, 孟令奇, 夏侯俊招, 顾佳磊. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
Huanhuan LIU, Guangming LIU, Futian LI, Lingqi MENG, Junzhao XIAHOU, Jialei GU. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 377-383.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.149      或      https://www.jcscp.org/CN/Y2023/V43/I2/377

图1  TP439不锈钢在800 ℃高温水蒸气中48和2 h的氧化动力学曲线
图2  TP439不锈钢在800 ℃高温水蒸气中的氧化动力学拟合结果
图3  TP439不锈钢在800 ℃高温水蒸气中氧化不同时间后的XRD谱图
图4  TP439不锈钢在800 ℃高温水蒸气中氧化不同时间后的表面形貌及其对应的能谱图
图5  TP439不锈钢在800 ℃高温水蒸气中氧化不同时间后的表面形貌图
图6  图5中O、Cr和Fe成分与氧化时间变化关系图
图7  TP439不锈钢在高温水蒸气中氧化物沿晶界生长示意图
[1] Zhao Y L, Fan P P, Wang C Y, et al. Fatigue lifetime assessment on a high-pressure heater in supercritical coal-fired power plants during transient processes of operational flexibility regulation [J]. Appl. Therm. Eng., 2019, 156: 196
doi: 10.1016/j.applthermaleng.2019.04.066
[2] Tao R, Xiao R F, Liu W C. Investigation of the flow characteristics in a main nuclear power plant pump with eccentric impeller [J]. Nucl. Eng. Des., 2018, 327: 70
doi: 10.1016/j.nucengdes.2017.11.040
[3] Liu E J. Application of 439 ferrite tube to feedwater heater [J]. Power Stat. Auxili. Equip., 2008, 29(3): 26
[3] (刘尔静. 铁素体439焊管在给水加热器中的应用 [J]. 电站辅机, 2008, 29(3): 26)
[4] Mo Y M, Gong Y, Yang Z G. Failure analysis on the O-ring of radial thrust bearing room of main pump in a nuclear power plant [J]. Eng. Fail. Anal., 2020, 115: 104673
doi: 10.1016/j.engfailanal.2020.104673
[5] Wang J W, Liu D M. Analysis on the larger drain subcooler approach of high pressure heater and its countermeasure [J]. Power Stat. Auxil. Equip., 2010, 31(1): 5
[5] (王继伟, 刘瑞梅. 高压加热器疏水端差偏大原因分析及应对策略 [J]. 电站辅机, 2010, 31(1): 5)
[6] Imada N, Kitano K, Tanaka K. R&D of the gas engine heat pump water heater and energy evaluation of the system [A]. MatsumotoM, UmedaY, Masui, K, et al. Design for Innovative Value Towards a Sustainable Society [M]. Dordrecht: Springer, 2012: 127
[7] Zhao H, Wong Z M, Li B. Leakage of HP feedwater heater and preventive measures [J]. Power Syst. Eng., 2000, 16: 298
[7] (赵辉, 翁志明, 李波. 高压加热器管子泄漏原因分析和防止措施 [J]. 电站系统工程, 2000, 16: 298)
[8] Yuan J T, Wu X M, Wang W, et al. Effect of grain size on oxidation of heat-resistant steels in high temperature water steam [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 257
[8] (袁军涛, 吴细毛, 王文 等. 晶粒尺寸对耐热钢在高温水蒸汽中的氧化行为的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 257)
[9] Li Y, Wang Y H, Cao L H, et al. Modeling for the performance evaluation of 600 MW supercritical unit operating No.0 high pressure heater [J]. Energy, 2018, 149: 639
doi: 10.1016/j.energy.2018.01.103
[10] Sabioni A C S, Malheiros E A, Ji V, et al. Ion diffusion study in the oxide layers due to oxidation of AISI 439 ferritic stainless steel [J]. Oxid. Met., 2014, 81: 407
doi: 10.1007/s11085-013-9451-6
[11] Rao M A, Babu R S, Kumar M V P. Stress corrosion cracking failure of a SS 316L high pressure heater tube [J]. Eng. Fail. Anal., 2018, 90: 14
doi: 10.1016/j.engfailanal.2018.03.013
[12] Xu W M, Zhan J, Zhang W X, et al. SCC behavior of TP439 stainless steel in high temperature and high pressure water [J]. Corros. Prot., 2016, 37: 723
[12] (徐为民, 詹静, 张微啸 等. TP439不锈钢在高温高压水中的应力腐蚀开裂行为 [J]. 腐蚀与防护, 2016, 37: 723)
[13] Zhang D Q, Liu G M, Zhao G Q, et al. Cyclic oxidation behavior of Fe-9Cr-1Mo steel in water vapor atmosphere [J]. J. Cent. South Univ. Technol., 2009, 16: 535
doi: 10.1007/s11771-009-0089-0
[14] Liu G M, Wang C F, Liu G, et al. Oxidation behavior of T91 steel in water vapor atmosphere at 750 ℃ [J]. Adv. Mater. Res., 2014, 941-944: 193
[15] Álvarez-Fernández M, Del Portillo-Valdés L, Alonso-Tristán C. Thermal analysis of closed feedwater heaters in nuclear power plants [J]. Appl. Therm. Eng., 2014, 68: 45
doi: 10.1016/j.applthermaleng.2014.04.006
[16] Cashell K A, Baddoo N R. Ferritic stainless steels in structural applications [J]. Thin. Wall. Struct., 2014, 83: 169
doi: 10.1016/j.tws.2014.03.014
[17] Jiang J W, Liu X, Shi Z H, et al. Research on properties of SA803TP439 heat exchange tubes for high pressure heater in nuclear power plant [J]. Found. Technol., 2014, 35: 147
[17] (姜家旺, 刘熙, 施震灏 等. 核电厂高压加热器SA803TP439换热管的性能研究 [J]. 铸造技术, 2014, 35: 147)
[18] Ren Y F. Evaluation on TP439 welded tube for high-pressure feedwater heater of nuclear power stations [J]. Power Equip., 2013, 27: 37
[18] (任一峰. 核电站高压加热器用TP439焊管的评估 [J]. 发电设备, 2013, 27: 37)
[19] Chen X M, Hu G H, Yang Y, et al. Application of TP439 welded pipe in high voltage heaters of domestic nuclear power plants [J]. Electr. Eng., 2016, (7): 63
[19] (陈小萌, 胡光辉, 杨毅 等. TP439焊管在国内核电站高压加热器的应用 [J]. 电工技术, 2016, (7): 63)
[20] Huntz A M, Reckmann A, Haut C, et al. Oxidation of AISI 304 and AISI 439 stainless steels [J]. Mater. Sci. Eng., 2007, 447A: 266
[21] Pettersson C, Jonsson T, Proff C, et al. High temperature oxidation of the austenitic (35Fe27Cr31Ni) alloy sanicro 28 in O2+H2O environment [J]. Oxid. Met., 2010, 74: 93
doi: 10.1007/s11085-010-9199-1
[22] Young D J. High temperature oxidation and corrosion of metals [J]. Corros. Sci., 2008, 1: 3
[23] Tan F Y. Engineering Thermodynamics [M]. Beijing: Chemical Industry Press, 2010
[23] (谭羽非. 工程热力学 [M]. 北京: 化学工业出版社, 2010)
[24] Liang Y J, Che Y C. Inorganic Thermodynamics Databook [M]. Shenyang: Northeastern University Press, 1993
[24] (梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993)
[25] Intiso L, Johansson L G, Canovic S, et al. Oxidation behaviour of sanicro 25 (42Fe22Cr25NiWCuNbN) in O2/H2O mixture at 600 ℃ [J]. Oxid. Met., 2012, 77: 209
doi: 10.1007/s11085-011-9281-3
[26] Zhang N Q, Yue G Q, Lv F B, et al. Crack growth rate of stress corrosion cracking of Inconel 625 in high temperature steam [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 9
[26] (张乃强, 岳国强, 吕法彬 等. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究 [J]. 中国腐蚀与防护学报, 2017, 37: 9)
[27] Othman N K, Zhang J Q, Young D J. Temperature and water vapour effects on the cyclic oxidation behaviour of Fe-Cr alloys [J]. Corros. Sci., 2010, 52: 2827
doi: 10.1016/j.corsci.2010.04.026
[28] Sabioni A C S, Malheiros E A, Ji V, et al. Determination of oxygen diffusion coefficient in oxidation films of the AISI 439 ferritic stainless steel [J]. Def. Diffu. Forum., 2012, 323-325: 339
[29] Lobb R C, Evans H E. A determination of the chromium concentration for 'healing' layer formation during the oxidation of chromium-depleted 20cr-25ni-nb stainless steel [J]. Corros. Sci., 1984, 24: 385
doi: 10.1016/0010-938X(84)90065-9
[30] Yuan J T, Wang W, Zhang H H, et al. Investigation into the failure mechanism of chromia scale thermally grown on an austenitic stainless steel in pure steam [J]. Corros. Sci., 2016, 109: 36
doi: 10.1016/j.corsci.2016.03.021
[1] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[2] 任岩, 张鑫涛, 盖欣, 徐敬军, 张伟, 陈勇, 李美栓. 四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[3] 刘姝妤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 段海涛, 夏思瑶, 夏春怀. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[4] 贺南开, 王永欣, 周升国, 周大朋, 李金龙. Inconel 718合金在580 ℃下水蒸气环境中的氧化行为及摩擦学性能[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[5] 杨依凡, 孙文瑶, 陈明辉, 王金龙, 王福会. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2+20%H2O气氛中的氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[6] 任延杰, 吕云蕾, 戴汀, 郭晓慧, 陈荐, 周立波, 邱玮, 牛焱. 三元Co-Ni-Al合金在800~1000 ℃纯氧中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[7] 解磊鹏, 陈明辉, 王金龙, 王福会. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[8] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[9] 张勤, 梁涛沙, 王文, 赵朗朗, 姜岳峰. 纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[10] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[11] 王明好, 王欢, 刘叡, 孟凡帝, 刘莉, 王福会. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[12] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[13] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[14] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[15] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.