Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 186-190     CSTR: 32134.14.1005.4537.2022.042      DOI: 10.11902/1005.4537.2022.042
  研究报告 本期目录 | 过刊浏览 |
Q690高强钢在模拟海洋浪溅区环境下耐蚀性能研究
魏欢欢1,2(), 郑东东2, 陈晨2,3(), 张大伟2, 王凯励4
1.杨凌职业技术学院建筑工程学院 咸阳 712100
2.西安理工大学 西北旱区生态水利国家重点实验室 西安 710048
3.西安建筑科技大学土木工程学院 西安 710054
4.中铁第一勘察设计院集团有限公司 西安 710043
Corrosion Resistance of Q690 High Strength Steel in Simulated Corrosive Environment of Ocean Splash Zone
WEI Huanhuan1,2(), ZHENG Dongdong2, CHEN Chen2,3(), ZHANG Dawei2, WANG Kaili4
1.School of Architectural Engineering, Yangling Vocational & Technical College, Xianyang 712100, China
2.State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
3.School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710054, China
4.China Railway the First Survey and Design Institute Group Co. Ltd., Xi'an 710043, China
全文: PDF(1915 KB)   HTML
摘要: 

为研究海洋浪溅区Q690高强钢材腐蚀行为和表面形貌分布特征,通过盐水周浸-湿热循环试验得到不同周期锈蚀试件,利用激光共聚焦显微镜 (LSCM) 采集表面的坐标参数,分析了微观形貌尺寸随着腐蚀周期的变化规律。结果表明:在腐蚀初始阶段,表面产生少量针状点蚀产物,金属色泽逐渐丧失,随着腐蚀损伤程度增加,材料表面点蚀形貌逐渐向坑蚀发展,处于腐蚀后期时,分布有大量层状产物,局部区域存在剥落现象。此外,根据微观扫描分析可知,表面堆积产物对基体内部具有较好保护作用,腐蚀行为沿着水平方向快速延伸,最终完全包裹试件表面,当腐蚀周期为100 d时,体积损失率和表面腐蚀高度分别为1.38%和840 μm。

关键词 高强钢浪溅区湿热循环微观形貌腐蚀损伤体积损失率    
Abstract

The surface of steel structural components exposed to extremely harsh environments is prone to rust, as a result, their normal service life is reduced, whilst the durability problem is increasingly prominent. Thus, the corrosion behavior and characteristics of surface morphology of Q690 high strength steel was assessed via alternative cyclic tests: immersion in artificial sea water, drying by indoor ventilation air and drying in atmosphere of 95% (±3%) relative humidity at 35 ℃, aiming to simulate the corrosive environment of ocean splash zone. Then, the variation of surface morphology with the progress of corrosion process and the corresponding surface coordinate parameters were collected by laser confocal microscope (LSCM). The results show that in the initial stage of corrosion, a small number of needle-like pits occurred on the surface, and the metallic luster was gradually lost. With the progress of corrosion process, the initial needle-like pits gradually developed toward large pits. At the later stage of corrosion, there exist a large number of lamellar corrosion products, and on which, exfoliations in some local areas could be observed. In addition, according to the microscopic scanning analysis, it could be seen that the cumulated corrosion products exhibited a good protective effect on the steel substrate, the corrosion process rapidly extended to the periphery and finally corrosion products completely covered the whole surface of steel specimen. When the corrosion period was 100 d, the volume loss rate and surface corrosion height were 1.38% and 840 μm, respectively.

Key wordshigh strength steel    splash zone    damp-heat cycle    micro morphology    corrosion damage    volume loss rate
收稿日期: 2022-02-17      32134.14.1005.4537.2022.042
ZTFLH:  TG174  
基金资助:国家自然科学基金(51978571);杨凌职业技术学院2021年自然科学基金(ZK21-28);西北旱区生态水利国家重点实验室资助基金(2017ZZKT-8)
作者简介: 魏欢欢,男,1996年生,硕士,助教

引用本文:

魏欢欢, 郑东东, 陈晨, 张大伟, 王凯励. Q690高强钢在模拟海洋浪溅区环境下耐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 186-190.
Huanhuan WEI, Dongdong ZHENG, Chen CHEN, Dawei ZHANG, Kaili WANG. Corrosion Resistance of Q690 High Strength Steel in Simulated Corrosive Environment of Ocean Splash Zone. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 186-190.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.042      或      https://www.jcscp.org/CN/Y2023/V43/I1/186

图1  不同腐蚀周期宏观形貌图
图2  不同腐蚀周期扫描微观形貌图
Specimen codeCorrosion time / dS / mm2S0 / mm2V / mm3ηv / %
CT2020125.75149.905.190.26
CT4040235.45262.9010.040.49
CT6060300.70331.2519.981.00
CT8080323.80340.0022.361.12
CT100100366.60407.5527.561.38
表1  扫描区腐蚀参数统计
Specimen codeCorrosion time / dηs%dμmwμmd / wζmm·a-1
CT20201.23127.1471227.6950.0532.320
CT40403.03161.9253516.2980.0511.478
CT60604.05154.6535636.5030.0390.941
CT80806.18173.3148472.8560.0220.791
CT1001007.21214.6789494.5830.0230.784
表2  扫描区蚀坑尺寸统计
图3  腐蚀面积与腐蚀时间拟合关系
图4  蚀坑尺寸与腐蚀时间关系
图5  Q690钢试样t-ηv-ηs关系曲面
1 Akyel A, Kolstein M H, Bijlaard F S K. Fatigue strength of repaired welded connections made of very high strength steels [J]. Eng. Struct., 2018, 161: 28
doi: 10.1016/j.engstruct.2018.01.023
2 Guo H C, Lei T Q, Yu J G, et al. Experimental study on mechanical properties of Q690 high strength steel in marine corrosive environment [J]. Int. J. Steel Struct., 2021, 21: 717
doi: 10.1007/s13296-021-00468-z
3 Wei H H, Lei T Q, Zheng D D, et al. Corrosion characteristics of butt welds of Q690 high strength steel in laboratory test as an enviormental simulation of ocean splash zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 675
3 魏欢欢, 雷天奇, 郑东东 等. Q690高强钢对接焊缝加速腐蚀试验研究 [J]. 中国腐蚀与防护学报, 2022, 42: 675
4 Wang K, Yi Y Y, Lu Q H, et al. Effect of peak temperatures on corrosion behavior of thermal simulated narrow-gap weld Q690 high strength steel [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 447
4 王凯, 易耀勇, 卢清华 等. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 447
5 Sun Y W, Zhong Y P, Wang L S, et al. Corrosion behavior of low-alloy high strength steels in a simulated common SO2-containing atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 274
5 孙永伟, 钟玉平, 王灵水 等. 低合金高强度钢的耐模拟工业大气腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 274
6 Su H Y, Liang Y, Wei S C, et al. Couple effect of hydrostatic pressure and dissolved oxygen on corrosion behaviour of low-alloy high strength steel in 3.5 wt-%NaCl solution [J]. Corros. Eng., Sci. Technol., 2019, 54: 330
7 Nevshupa R, Martinez I, Ramos S, et al. The effect of environmental variables on early corrosion of high-strength low-alloy mooring steel immersed in seawater [J]. Mar. Struct., 2018, 60: 226
doi: 10.1016/j.marstruc.2018.04.003
8 Kingkam W, Zhao C Z, Li H, et al. Hot deformation and corrosion resistance of high-strength low-alloy steel [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 495
doi: 10.1007/s40195-018-0797-2
9 Jia C, Shao Y S, Guo L H, et al. Mechanical properties of corroded high strength low alloy steel plate [J]. J. Constr. Steel Res., 2020, 172: 1
10 Cheng P J, Xie J J, Pan X X, et al. Experimental study of time-varying corrosion model of high strength steel strands in coastal environment [J]. J. Henan Univ. Sci. Technol. (Nat. Sci.), 2021, 42(2): 76
10 程鹏举, 谢军军, 潘鑫鑫 等. 高强钢绞线沿海环境锈蚀时变模型试验研究 [J]. 河南科技大学学报 (自然科学版), 2021, 42(2): 76
11 Han E-H, Chen J M, Su Y J, et al. Corrosion protection techniques of marine engineering structure and ship equipment-current status and future trend [J]. Mater. China, 2014, 33: 65
11 韩恩厚, 陈建敏, 宿彦京 等. 海洋工程结构与船舶的腐蚀防护—现状与趋势 [J]. 中国材料进展, 2014, 33: 65
12 Guo H C, Wei H H, Li G Q, et al. Experimental research on fatigue performance of corroded Q690 high-strength steel [J]. J. Mater. Civil Eng., 2021, 33: 1
13 Guo H C, Wei H H, Kou J L, et al. Mechanical properties test of butt welds of corroded Q690 high strength steel under the coupling of damp-heat cycle dipping [J]. Appl. Ocean Res., 2021, 111: 102677
doi: 10.1016/j.apor.2021.102677
14 Lei T Q, Wei H H, Zheng D D, et al. Review of corrosion fatigue of high strength steel [J]. J. Shandong Electr. Power Coll., 2021, 24(6): 48
14 雷天奇, 魏欢欢, 郑东东 等. 高强度钢材腐蚀疲劳研究综述 [J]. 山东电力高等专科学校学报, 2021, 24(6): 48
15 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
15 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
16 Lin Z H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
16 林朝晖, 明南希, 何川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307
17 Liu J G, Li Y T, Hou B R. Progress in corrosion and protection of steels in marine splash zone [J]. Corros. Prot., 2012, 33: 833
17 刘建国, 李言涛, 侯保荣. 海洋浪溅区钢铁腐蚀与防护进展 [J]. 腐蚀与防护, 2012, 33: 833
18 Guo H C, Wei H H, Li G Q, et al. Experimental research on fatigue performance of butt welds of corroded Q690 high strength steel [J]. J. Constr. Steel Res., 2021, 184: 106801
doi: 10.1016/j.jcsr.2021.106801
19 Wei H H. Research on fatigue performance of butt welds of corroded Q690 high strength steel in humid and hot immersion environment [D]. Xi'an: Xi'an University of Technology, 2021
19 魏欢欢. 湿热周浸环境下锈蚀Q690高强钢对接焊缝疲劳性能研究 [D]. 西安: 西安理工大学, 2021
20 Hou B R. Anti-corrosion technology to steel structure in splash zone [J]. Mater. China, 2014, 33: 26
20 侯保荣. 海洋钢结构浪花飞溅区腐蚀防护技术 [J]. 中国材料进展, 2014, 33: 26
[1] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[2] 何训, 吴梦雪, 尹力, 朱金. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[3] 江杰, 姜建军, 杨丽景, 雷步芳, 赵宇, 林建强, 宋振纶. 烧结NdFeB表面Zn-Al涂层制备及耐腐蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.
[4] 马成, 崔彦发, 张青, 赵林林, 王立辉, 熊自柳. 中锰TRIP钢氢致开裂性能研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(6): 885-893.
[5] 王育鑫, 吴波, 戴乐阳, 胡科峰, 吴建华, 杨阳, 闫福磊, 张贤慧. 低合金钢在模拟海洋低温环境下的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[6] 魏欢欢, 雷天奇, 郑东东, 辛振科. Q690高强钢对接焊缝加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 675-680.
[7] 翁硕, 俞俊, 赵礼辉, 冯金芝, 郑松林. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
[8] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[9] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[10] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[12] 王玉昆, 刘静, 胡骞, 黄峰. S2-对A710钢在NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[13] 黄彦良, 余秀明, 郑珉, 曲文娟, Amar Prasad Yadav, Roland De Marco. AISI4135钢在浪溅区的润湿特征及规律[J]. 中国腐蚀与防护学报, 2015, 35(5): 474-478.
[14] 崔学军, 白成波, 朱一波, 闵虹云, 王荣, 林修洲. Mn(NO3)2/Na2MoO4对AZ31B镁合金表面磷化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(5): 477-482.
[15] 王刚,金平,谭晓明,王德. 海洋环境下7B04铝合金腐蚀损伤演化规律研究[J]. 中国腐蚀与防护学报, 2012, 32(4): 338-342.