Q690高强钢在模拟海洋浪溅区环境下耐蚀性能研究
1.
2.
3.
4.
Corrosion Resistance of Q690 High Strength Steel in Simulated Corrosive Environment of Ocean Splash Zone
1.
2.
3.
4.
通讯作者: 魏欢欢,E-mail:wh0402@qq.com,研究方向为高强度钢材钢结构、金属材料疲劳与断裂耐久性陈晨,E-mail:3312176207@qq.com,研究方向为木结构减震抗震、性能优化与评估、新型结构体系
收稿日期: 2022-02-17 修回日期: 2022-03-10
基金资助: |
|
Corresponding authors: WEI Huanhuan, E-mail:wh0402@qq.comCHEN Chen, E-mail:3312176207@qq.com
Received: 2022-02-17 Revised: 2022-03-10
Fund supported: |
|
作者简介 About authors
魏欢欢,男,1996年生,硕士,助教
为研究海洋浪溅区Q690高强钢材腐蚀行为和表面形貌分布特征,通过盐水周浸-湿热循环试验得到不同周期锈蚀试件,利用激光共聚焦显微镜 (LSCM) 采集表面的坐标参数,分析了微观形貌尺寸随着腐蚀周期的变化规律。结果表明:在腐蚀初始阶段,表面产生少量针状点蚀产物,金属色泽逐渐丧失,随着腐蚀损伤程度增加,材料表面点蚀形貌逐渐向坑蚀发展,处于腐蚀后期时,分布有大量层状产物,局部区域存在剥落现象。此外,根据微观扫描分析可知,表面堆积产物对基体内部具有较好保护作用,腐蚀行为沿着水平方向快速延伸,最终完全包裹试件表面,当腐蚀周期为100 d时,体积损失率和表面腐蚀高度分别为1.38%和840 μm。
关键词:
The surface of steel structural components exposed to extremely harsh environments is prone to rust, as a result, their normal service life is reduced, whilst the durability problem is increasingly prominent. Thus, the corrosion behavior and characteristics of surface morphology of Q690 high strength steel was assessed via alternative cyclic tests: immersion in artificial sea water, drying by indoor ventilation air and drying in atmosphere of 95% (±3%) relative humidity at 35 ℃, aiming to simulate the corrosive environment of ocean splash zone. Then, the variation of surface morphology with the progress of corrosion process and the corresponding surface coordinate parameters were collected by laser confocal microscope (LSCM). The results show that in the initial stage of corrosion, a small number of needle-like pits occurred on the surface, and the metallic luster was gradually lost. With the progress of corrosion process, the initial needle-like pits gradually developed toward large pits. At the later stage of corrosion, there exist a large number of lamellar corrosion products, and on which, exfoliations in some local areas could be observed. In addition, according to the microscopic scanning analysis, it could be seen that the cumulated corrosion products exhibited a good protective effect on the steel substrate, the corrosion process rapidly extended to the periphery and finally corrosion products completely covered the whole surface of steel specimen. When the corrosion period was 100 d, the volume loss rate and surface corrosion height were 1.38% and 840 μm, respectively.
Keywords:
本文引用格式
魏欢欢, 郑东东, 陈晨, 张大伟, 王凯励.
WEI Huanhuan, ZHENG Dongdong, CHEN Chen, ZHANG Dawei, WANG Kaili.
海洋环境具有高盐雾、湿度大等特征,当长期遭受海水干湿交替及浪花飞溅冲蚀影响时,材料表面容易发生化学或电化学反应,使得承重构件有效截面尺寸减小,若在循环荷载作用时,由于存在不均匀蚀坑分布,钢材材质变脆,应力集中现象极为明显,加快了萌生裂纹的扩展速率,导致高强钢工程结构的承载性能快速退化,实测疲劳寿命缩短[1-3],因此开展高强钢材腐蚀损伤机理及微观形貌研究,对于在役工程结构安全可靠性能评估具有重要意义。王凯等[4]基于Gleeble3800热模拟循环过程,研究了Q690高强钢材电化学腐蚀特性,结果表明材料腐蚀损失行为与微观组织结构、晶粒尺寸存在相关性;孙永伟等[5]通过模拟工业大气环境,对比分析Q345E、Cr-Ni-Cu低合金高强钢材的腐蚀特性,研究表明微量合金元素能够增强锈层致密程度,提高基体耐久性;Su等[6]和Nevshupa等[7]根据扫描电镜测定数据,研究了NaCl溶液内含氧量、静水压力对高强钢材的腐蚀损伤行为影响;Kingkam等[8]根据微观扫描结果,讨论了高强钢材腐蚀特性,随着形变量和环境温度提高,材料晶粒尺寸逐渐递增,耐久性能变差;Jia等[9]选取醋酸盐雾加速腐蚀 (CASS) 方案测得高强钢板腐蚀损伤参数,随着周期增加,粗糙度逐渐提高,表面形貌以点蚀分布为主;程鹏举等[10]通过模拟沿海腐蚀环境给出高强钢绞线的时变损伤模型,进行微观形貌观测之后,建立了蚀坑尺寸与腐蚀周期的分段函数关系。
1 实验方法
实验用材为武汉钢厂生产Q690D低合金高强钢材,板厚为10 mm,化学成分 (质量分数:%) 分别为:C 0.07,Mn 1.61,Si 0.15,P 0.007,S 0.002,Cr 0.01,Mo 0.002,V 0.003,其余为Fe,腐蚀试件尺寸为280 mm×60 mm×10 mm。材料的质量等级、力学性能参数满足GB/T 1591-2008要求;此外,为确保切割加工时的板材平整性,采取线切割方式制备标准试样,当边缘表面打磨清理结束以后,进行编号并称重,所选量测设备为电子天平,精度为0.1 mg。
通过盐水周浸-湿热循环加速腐蚀方案,模拟了海洋环境浪溅区钢材受损行为[17],经考虑实际环境特征后,设置腐蚀、观察、除锈、测量4个阶段,在腐蚀过程中,首先将预制标准试件浸泡于配比浓度为26 g/L的NaCl溶液 (pH介于6~7) 液面以下至少10 mm处,液体温度与室内环境保持一致,时长为6 h,随之取出置于室内通风处晾晒6 h,待表面水分完全散失后,再将其摆放于温度为35 ℃、相对湿度为95% (±3%) 的试验箱内进行循环养护,周期为12 h;在加速腐蚀周期内,每隔2 d重复一次上述腐蚀环节,并以20 d作为一次取样批次周期,时间总计为100 d,未腐蚀试件作为实验对比,当腐蚀实验结束后,应先选用打磨机除去试件表面的腐蚀产物,再用毛刷清除表面残留附着物,当试件称重前后质量精度小于1 mg后,除锈工作结束;此外,为研究试件表面形貌分布范围和腐蚀特征,采用LEXT OLS4000激光共聚焦显微镜 (LSCM) 进行扫描成像,即通过单元成像叠加后,得到整个扫描区域的微观形貌图,测定并导出除锈后的试样表面任意位置形貌尺寸,由于腐蚀行为存在随机性与不确定性,故以除锈后的试件中心为基准点,再对尺寸为40 mm×90 mm×10 mm的试样正、反侧进行观察,扫描区域尺寸为30 mm×30 mm。
2 腐蚀结果分析
2.1 宏观腐蚀结果分析
图1
图1
不同腐蚀周期宏观形貌图
Fig.1
Macromorphology after different corrosion periods: (a) CT0, (b) CT20, (c) CT40, (d) CT60, (e) CT80, (f) CT100
2.2 微观扫描结果
选用LSCM仪器对除锈后的试件进行扫描,提取微观形貌分布范围和尺寸大小;在实验初期,腐蚀物呈随机性分布,尚未发现蚀坑产生,损伤程度相对偏弱,蚀坑边缘高度不超过330 μm。随着腐蚀周期增加,实测尺寸逐渐增长,扫描区形貌起伏差异偏高,分布少量蚀坑,处腐蚀后期时,由于表面存在大量致密堆积物,抑制外界环境介质Cl-、H2O侵蚀影响,锈层对基体内部起到较好的保护作用,腐蚀沿着表面水平方向快速扩展,最终完全包裹板材外围,当腐蚀进行100 d后,蚀坑边缘高度不超过840 μm。不同腐蚀周期的微观形貌分布如图2所示。
图2
图2
不同腐蚀周期扫描微观形貌图
Fig.2
Scanning micro-topography after different corrosion periods (a) CT20; (b) CT40; (c) CT60; (d) CT80; (e) CT100
2.3 参数分析
表1 扫描区腐蚀参数统计
Table 1
Specimen code | Corrosion time / d | S / mm2 | S0 / mm2 | V / mm3 | ηv / % |
---|---|---|---|---|---|
CT20 | 20 | 125.75 | 149.90 | 5.19 | 0.26 |
CT40 | 40 | 235.45 | 262.90 | 10.04 | 0.49 |
CT60 | 60 | 300.70 | 331.25 | 19.98 | 1.00 |
CT80 | 80 | 323.80 | 340.00 | 22.36 | 1.12 |
CT100 | 100 | 366.60 | 407.55 | 27.56 | 1.38 |
表2 扫描区蚀坑尺寸统计
Table 2
Specimen code | Corrosion time / d | ηs% | dμm | wμm | d / w | ζmm·a-1 |
---|---|---|---|---|---|---|
CT20 | 20 | 1.23 | 127.147 | 1227.695 | 0.053 | 2.320 |
CT40 | 40 | 3.03 | 161.925 | 3516.298 | 0.051 | 1.478 |
CT60 | 60 | 4.05 | 154.653 | 5636.503 | 0.039 | 0.941 |
CT80 | 80 | 6.18 | 173.314 | 8472.856 | 0.022 | 0.791 |
CT100 | 100 | 7.21 | 214.678 | 9494.583 | 0.023 | 0.784 |
式中,V0和V为扫描区域腐蚀前后的体积 (mm3);t为腐蚀周期 (d)。
图3
图3
腐蚀面积与腐蚀时间拟合关系
Fig.3
Fitting relationship between corrosion area and corrosion time
图4
图4
蚀坑尺寸与腐蚀时间关系
Fig.4
Relationship between pit size and corrosion time (a) d-t relationship; (b) w-t relationship; (c) d/w-t relationship
图5
3 结论
(1) 在腐蚀初期,高强钢材固有金属色泽变暗,当损伤程度加剧时,生成物逐渐增多,并且包裹板材表面,此时腐蚀过程开始向坑蚀过渡,在试验后期,表面分布层状堆积产物,局部区域存在腐蚀剥离现象。
(2) 通过微观扫描结果可知,起始阶段以针状点蚀形貌分布为主,随着腐蚀周期增加时,表面微观形貌分布起伏差异较大,伴有蚀坑生成;此外,产物堆积可抑制氧化活性介质作用,减缓材料自身的腐蚀速率。其中,当周期100 d后,实测体积损失率和蚀坑平均深度约为1.38%、214.678 μm。
(3) 根据室内加速腐蚀试验结果表明,所选方案能够用于海洋环境高强钢耐久性研究,可为相关工程结构设计指导及实际应用提供科学依据。
参考文献
Fatigue strength of repaired welded connections made of very high strength steels
[J].
Experimental study on mechanical properties of Q690 high strength steel in marine corrosive environment
[J].
Corrosion characteristics of butt welds of Q690 high strength steel in laboratory test as an enviormental simulation of ocean splash zone
[J].
Q690高强钢对接焊缝加速腐蚀试验研究
[J].
Effect of peak temperatures on corrosion behavior of thermal simulated narrow-gap weld Q690 high strength steel
[J].
基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响
[J].
Corrosion behavior of low-alloy high strength steels in a simulated common SO2-containing atmosphere
[J].
低合金高强度钢的耐模拟工业大气腐蚀行为研究
[J].
Couple effect of hydrostatic pressure and dissolved oxygen on corrosion behaviour of low-alloy high strength steel in 3.5 wt-%NaCl solution
[J].
The effect of environmental variables on early corrosion of high-strength low-alloy mooring steel immersed in seawater
[J].
Hot deformation and corrosion resistance of high-strength low-alloy steel
[J].
Mechanical properties of corroded high strength low alloy steel plate
[J].
Experimental study of time-varying corrosion model of high strength steel strands in coastal environment
[J].
高强钢绞线沿海环境锈蚀时变模型试验研究
[J].
Corrosion protection techniques of marine engineering structure and ship equipment-current status and future trend
[J].
海洋工程结构与船舶的腐蚀防护—现状与趋势
[J].
Experimental research on fatigue performance of corroded Q690 high-strength steel
[J].
Mechanical properties test of butt welds of corroded Q690 high strength steel under the coupling of damp-heat cycle dipping
[J].
Review of corrosion fatigue of high strength steel
[J].
高强度钢材腐蚀疲劳研究综述
[J].
Corrosion mechanism of materials in three typical harsh marine atmospheric environments
[J].
几种苛刻海洋大气环境下的海工材料腐蚀机制
[J].
Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water
[J].
静水压力对X70钢在海洋环境中腐蚀行为影响研究
[J].
Progress in corrosion and protection of steels in marine splash zone
[J].
海洋浪溅区钢铁腐蚀与防护进展
[J].
Experimental research on fatigue performance of butt welds of corroded Q690 high strength steel
[J].
Research on fatigue performance of butt welds of corroded Q690 high strength steel in humid and hot immersion environment
[D].
湿热周浸环境下锈蚀Q690高强钢对接焊缝疲劳性能研究
[D].
/
〈 |
|
〉 |
