Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 929-938          DOI: 10.11902/1005.4537.2022.133
  研究报告 本期目录 | 过刊浏览 |
交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为
王腾宇1,2, 张正贵1, 陆卫中2(), 吴希革3
1.沈阳大学机械工程学院 沈阳 110018
2.中国科学院宁波材料技术与工程研究所 宁波 315200
3.大庆庆鲁朗润科技有限公司 大庆 163316
Effect of Alternating Pressure on Electrochemical Behavior of Solvent-free Epoxy Coating in Simulated Ultra-deep Sea Environment
WANG Tengyu1,2, ZHANG Zhenggui1, LU Weizhong2(), WU Xige3
1. School of Mechanical Engineering, Shenyang University, Shenyang 110018, China
2. Ningbo Institute of materials technology and engineering, Chinese Academy of Sciences, Ningbo 315200, China
3. DaQing Qinglu Langrun Technology Co. Ltd., Daqing 163316, China
引用本文:

王腾宇, 张正贵, 陆卫中, 吴希革. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
Tengyu WANG, Zhenggui ZHANG, Weizhong LU, Xige WU. Effect of Alternating Pressure on Electrochemical Behavior of Solvent-free Epoxy Coating in Simulated Ultra-deep Sea Environment[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 929-938.

全文: PDF(7725 KB)   HTML
摘要: 

通过EIS和LEIS对环氧粉末涂层和无溶剂环氧液体涂层分别在模拟超深海环境中0.1~20和0.1~30 MPa交变压力腐蚀环境下浸泡480 h的失效行为进行了研究,分析了超深海交变压力对涂层耐腐蚀性能的影响,并利用SEM观察了浸泡后涂层/Q345钢界面的表面形貌。研究表明,两种涂层在0.1~30 MPa交变压力作用下涂层的失效过程较为明显,环氧粉末涂层在0.1~30和0.1~20 MPa交变压力浸泡480 h后涂层阻抗值分别下降了2个和1个数量级,无溶剂环氧液体涂层在同样环境下浸泡后阻抗值分别下降了3个和2个数量级,说明了环氧粉末涂层在交变压力条件下对Q345的保护性能更优,阻绝离子渗透能力更强。从LEIS结果分析出在较高交变压力下,涂层微观局部腐蚀扩散速率更快。

关键词 交变压力无溶剂环氧涂层超深海电化学行为失效    
Abstract

The failure behavior of epoxy powder coating and solvent-free epoxy liquid coating in simulated ultra-deep-sea environment for 480 h was studied by means of EIS and LEIS, while by applied alternating pressures within ranges 0.1-20 and 0.1-30 MPa respectively. The effect of alternating pressure on the corrosion resistance of coatings in deep-sea was examined, and the surface morphology of the coating/Q345 steel interface after immersion was characterized by SEM. The results show that the failure process of the two coatings is obvious under the alternating pressure of 0.1-30 MPa. After 480 h of pressured immersion, the impedance value of the epoxy powder coating decreased by 2 and 1 orders of magnitude after 480 h immersion at 0.1-30 and 0.1-20 MPa alternating pressures, respectively, and the impedance value of the solvent-free epoxy liquid coating decreased by 3 and 2 orders of magnitude respectively after immersion in the same environment. It shows that the epoxy powder coating has better protection performance to the Q345 steel in the condition of alternating pressure, and the ability to block ion penetration is stronger. According to the LEIS results, the failure behavior of the coating gradually spreads from local sites to the whole area under the alternating pressure, and the greater the alternating pressure, the faster the spread rate of the localized damage of the coating.

Key wordsalternating pressure    solvent-free epoxy coating    ultra-deep sea    electrochemical behavior    failure behavior
收稿日期: 2022-05-05     
ZTFLH:  TG174.5  
基金资助:宁波市“十三五”海洋经济创新发展示范项目(NBHY-2019-Z7)
作者简介: 王腾宇,男,1996年生,硕士生
图1  涂层A在0.1~30 MPa交变压力下浸泡480 h后的EIS测试结果
Time / hRc / Ω·cm2n1Qc / F·cm-2Rct / Ω·cm2n2Qdl / F·cm-2Zw
63.287×10110.92.291×10-10------------
284.258×10100.94922.324×10-10------------
414.43×10100.94772.37×10-10------------
523.909×10100.94412.486×10-10------------
752.556×10100.92.914×10-10------------
1441.896×10100.93652.739×10-10------------
2401.138×1090.9542.943×10-101.386×10100.96763.81×10-10---
3601.49×1080.31223.954×10-103.07×1090.31223.125×10-9---
4804.447×1070.89515.105×10-101.835×1080.49226.488×10-9---
表1  涂层A在0.1~30 MPa交变压力下浸泡480 h期间EIS参数拟合结果
图2  涂层B在0.1~30 MPa交变压力下浸泡480 h后的EIS测试结果
Time / hRc / Ω·cm2n1Qc / F·cm-2Rct / Ω·cm2n2Qdl / F·cm-2Zw
62.186×10100.92462.797×10-10------------
288.24×1090.89763.682×10-10------------
416.425×1070.95784.089×10-103.303×1080.5122.626×10-9---
525.344×1070.95848.099×10-104.179×1080.4097.318×10-9---
753.188×1080.95249.204×10-101.217×10100.63684.376×10-9---
1441.627×1080.94879.298×10-93.741×1080.61033.621×10-9---
2404.078×1050.96711.134×10-88.643×1060.81.303×10-8---
3608.964×1050.95351.136×10-87.24×1070.54371.472×10-93.332×10-7
4801.615×10511.134×10-86.376×1060.82384.344×10-94.105×10-7
表2  涂层B在0.1~30 MPa交变压力下浸泡480 h期间EIS参数拟合结果
图3  涂层A在0.1~20 MPa交变压力下浸泡480 h后的EIS测试结果
图4  涂层B在0.1~20 MPa交变压力下浸泡480 h后的EIS测试结果
图5  涂层A和涂层B在交变压力下浸泡480 h后涂层电阻 (Rc) 的变化曲线
图6  涂层A和涂层B在交变压力下浸泡480 h后涂层电容 (Qc) 的变化曲线
图7  两种涂层在交变压力作用下浸泡480 h后的LEIS结果图
Alternatingpressure|Z|1 kHzCoating ACoating B
0.1-30 MPaMax3×108 Ω·cm26×107 Ω·cm2
Min2×106 Ω·cm24×105 Ω·cm2
0.1-20 MPaMax6×108 Ω·cm21×108 Ω·cm2
Min2×107 Ω·cm22×106 Ω·cm2
表3  两种涂层在不同交变压力浸泡480 h后的LEIS数据对比
ElementCoating ACoating B
0.1-30 MPa0.1-20 MPa0.1-30 MPa0.1-20 MPa
Fe90.3293.1552.5376.71
O3.351.8736.3116.89
Cl0.680.104.750.98
Na1.540.151.630.50
C4.114.734.784.92
表4  涂层A和涂层B分别在不同交变压力下浸泡480 h后的Q345基体表面元素分析
图8  两种涂层在交变压力浸泡480 h后的表面SEM像
[1] Hou J, Guo W M, Deng C L. Influences of deep sea environmental factors on corrosion behavior of carbon steel [J]. Equip. Environ. Eng., 2008, 5(6): 82
[1] (侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响 [J]. 装备环境工程, 2008, 5(6): 82)
[2] Tang C T, Li X, Wang X M, et al. Research on the protective behavior of high solid content epoxy anti-corrosive coating/aluminum alloy system in simulated ultra-deep sea high-pressure environment [J]. Mater. Prot., 2021, 54(7): 15
[2] (唐楚天, 李想, 王西明 等. 高固体分环氧防腐蚀涂层/铝合金在模拟超深海高压环境下的防护行为研究 [J]. 材料保护, 2021, 54(7): 15)
[3] Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
[3] (高浩东, 崔宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39)
[4] Liu H C, Fan L, Zhang H B, et al. Research progress of stress corrosion cracking of Ti-alloy in deep sea environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 175
[4] (柳皓晨, 范林, 张海兵 等. 钛合金深海应力腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 175)
[5] Ye Y W, Zhang D W, Liu T, et al. Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene [J]. Carbon, 2019, 142: 164
doi: 10.1016/j.carbon.2018.10.050
[6] Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Eng., 2014, 87: 10
doi: 10.1016/j.oceaneng.2014.05.003
[7] El-Aouni N, Hsissou R, Safi Z, et al. Performance of two new epoxy resins as potential corrosion inhibitors for carbon steel in 1 M HCl medium: combining experimental and computational approaches [J]. Colloids Surf., 2021, 626A: 127066
[8] Lau K. Corrosion of epoxy-coated reinforcement in marine bridges with locally deficient concrete [D]. Sarasota: University of South Florida, 2010: 52
[9] Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on corrosion behavior of X70 pipeline steel in a simulated deep-sea environment [J]. J. Electroanal. Chem., 2018, 822: 123
doi: 10.1016/j.jelechem.2018.05.010
[10] Zhang C, Zhang Z W, Chen Q, et al. Effect of hydrostatic pressure on the corrosion behavior of HVOF-sprayed Fe-based amorphous coating [J]. J. Alloy. Compd., 2018, 758: 108
doi: 10.1016/j.jallcom.2018.05.100
[11] Hsissou R, Benhiba F, Echihi S, et al. Performance of curing epoxy resin as potential anticorrosive coating for carbon steel in 3.5%NaCl medium: Combining experimental and computational approaches [J]. Chem. Phys. Lett., 2021, 783: 139081
doi: 10.1016/j.cplett.2021.139081
[12] Zhang Z Q, Chen Z B, Dong Q J, et al. Galvanic corrosion behavior of low alloy steel, stainless steel and Al-Mg alloy in simulated deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 417
[12] (张泽群, 陈质彬, 董其娟 等. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 417)
[13] Lin Z H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
[13] (林朝晖, 明南希, 何川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307)
[14] Liu Y R, Du H, Zuo X, et al. Cr/GLC multilayered coating in simulated deep-sea environment: corrosion behavior and growth defect evolution [J]. Corros. Sci., 2021, 188: 109528
doi: 10.1016/j.corsci.2021.109528
[15] Tian W L, Meng F D, Liu L, et al. The failure behaviour of a commercial highly pigmented epoxy coating under marine alternating hydrostatic pressure [J]. Prog. Org. Coat., 2015, 82: 101
[16] Zhao H T, Lu W Z, Li J, et al. Failure behavior of solvent-free epoxy coating in simulated flowing sea water [J]. Corros. Sci. Prot. Technol,. 2016, 28: 397
[16] (赵洪涛, 陆卫中, 李京 等. 模拟流动海水条件下无溶剂环氧防腐涂层的失效行为 [J]. 腐蚀科学与防护技术, 2016, 28: 397)
[17] Zhao H T, Lu W Z, Li J, et al. Electrochemical behavior of solvent-free epoxy coating during erosion in simulated flowing sea water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 295
[17] (赵洪涛, 陆卫中, 李京 等. 无溶剂环氧防腐涂层在模拟海水冲刷条件下的电化学行为 [J]. 中国腐蚀与防护学报, 2016, 36: 295)
[18] Zhao H T, Lu W Z, Li J, et al. Degradation behavior of solvent-free epoxy coatings in simulated flowing sea water with sand by different flow rates [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 329
[18] (赵洪涛, 陆卫中, 李京 等. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为 [J]. 中国腐蚀与防护学报, 2017, 37: 329)
[19] Su Y, Qiu S H, Yang D P, et al. Active anti-corrosion of epoxy coating by nitrite ions intercalated MgAl LDH [J]. J. Hazard. Mater., 2020, 391: 122215
doi: 10.1016/j.jhazmat.2020.122215
[20] Ge T H, Zhao W J, Wu X D, etal, Incorporation of electroconductive carbon fibers to achieve enhanced anti-corrosion performance of zinc rich coatings [J]. J. Colloid Interface Sci., 2020, 567: 113
doi: 10.1016/j.jcis.2020.02.002
[21] Chen J F, Zhao W J. Silk fibroin-Ti3C2TX hybrid nanofiller enhance corrosion protection for waterborne epoxy coatings under deep sea environment [J]. Chem. Eng. J., 2021, 423: 130195
doi: 10.1016/j.cej.2021.130195
[22] Cao C N, Zhang J Q. Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002: 1
[22] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002: 1)
[23] Yang X, Gao Z M, Wang X Y, et al. Influence of fusion bonded epoxy powder on corrosion, wear performance of galvanized composite coating and hydrogen permeation behavior to based carbon steel [J]. Mater. Lett., 2021, 296: 129922
doi: 10.1016/j.matlet.2021.129922
[24] Meng F D, Zhang T, Liu L, et al. Failure behaviour of an epoxy coating with polyaniline modified graphene oxide under marine alternating hydrostatic pressure [J]. Surf. Coat. Technol., 2019, 361: 188
doi: 10.1016/j.surfcoat.2019.01.037
[25] Wu Y M, Zhao W J, Lu Z B, et al. Fluorinated graphene film for corrosion control on copper: experimental and theoretical studies [J]. Carbon, 2021, 179: 445
doi: 10.1016/j.carbon.2021.04.040
[26] Shen L, Li Y, Zhao W J, et al. Tuning F-doped degree of rGO: restraining corrosion-promotion activity of EP/rGO nanocomposite coating [J]. J. Mater. Sci. Technol., 2020, 44: 121
doi: 10.1016/j.jmst.2019.09.043
[27] Ganborena L, Vega J M, Özkaya B, etal, An SKP and EIS study of microporous nickel-chromium coatings in copper containing electrolytes [J]. Electrochim. Acta, 2019, 318: 683
doi: 10.1016/j.electacta.2019.05.108
[28] Magar H S, Hassan R Y A, Mulchandani A. Electrochemical Impedance Spectroscopy (EIS): principles, construction, and biosensing applications [J]. Sensors, 2021, 21: 6578
doi: 10.3390/s21196578
[29] Liu S, Gu L, Zhao H C, et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings [J]. J. Mater. Sci. Technol., 2016, 32: 425
doi: 10.1016/j.jmst.2015.12.017
[30] Yang H, Lu W Z, Li J, et al. Water absorption behavior of a kind of epoxy powder coating [J]. Corros. Sci. Prot. Technol., 2014, 26: 420
[30] (杨海, 陆卫中, 李京 等. 一种环氧粉末涂层的吸水性研究 [J]. 腐蚀科学与防护技术, 2014, 26: 420)
[1] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[2] 何逸, 郑传波, 戚浩宇, 刘珍光. TP2紫铜在工业环境中腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 71-81.
[3] 李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[4] 高浩东, 崔宇, 刘莉, 孟凡帝, 刘叡, 郑宏鹏, 王福会. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[5] 马士德, 刘欣, 王在东, 任亚东, 邰余, 韩文, 段继周. 普碳钢表面锌防护层在青岛中港海水中耐蚀与防污损性能对比研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 585-594.
[6] 陈宣东, 章青, 顾鑫, 李星. 基于概率分析的钢筋混凝土结构服役寿命预测研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 673-678.
[7] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[8] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[9] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[10] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[11] 王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[12] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[13] 赵洪涛, 陆卫中, 李京, 郑玉贵. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[14] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[15] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.