Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (6): 561-566    DOI: 10.11902/1005.4537.2016.197
  研究报告 本期目录 | 过刊浏览 |
用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究
孟凡帝1, 刘莉1(), 李瑛1, 王福会1,2
1 中国科学院金属研究所 沈阳 110016
2 东北大学 沈阳材料科学国家研究中心腐蚀与防护部 沈阳 110819
Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure
Fandi MENG1, Li LIU1(), Ying LI1, Fuhui WANG1,2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(2366 KB)   HTML
摘要: 

实验设计了一种预先植入涂层内部的圆环状微电极,并基于预埋微电极的方法设计了适用于深海交变压力环境下有机涂层原位电化学阻抗测试的电极系统。结果表明:设计的预埋微电极有效避免了外置电极在使用过程中不易安装以及有机涂层本身厚度对电化学测试信号的影响等缺点,实现了原位的涂层服役性能评价。同时,该微电极可以在深海高压及交变压力环境下有效使用,测试结果与传统三电极测量装置具有较好的一致性,证明了微电极设计的有效性及可靠性。

关键词 预埋微电极电化学阻抗谱交变压力环氧涂层    
Abstract

A kind of circular loop microelectrode was designed and embedded in the coating body during coating fabrication. Then a novel electrochemical impedance spectroscopy (EIS) measurement system was developed based on the embedded-microelectrode (EM), which was suitable for in situ evaluation of the coating in alternating hydrostatic pressured (AHP) sea-water with the purpose of simulation of deep sea environments. The results showed that EM could avoid difficulties related with the installation of an external electrode and could overcome drawbacks that the detected signals of the corrosion of metal beneath thick coatings was too weak for the field measurement by an external electrode. Therefore, the EM can be utilized in high hydrostatic pressured or AHP sea-water environment. The EIS results of the EM system were consistent well with those of the traditional three-electrode measuring device. Consequently, the validity and reliability of EM were reasonably confirmed.

Key wordsembedded-microelectrode    electrochemical impedance spectroscopy    alternating hydrostatic pressure    organic coating
收稿日期: 2016-10-09     
ZTFLH:  TG174.4  
基金资助:中国科学院海洋环境腐蚀与生物污损重点实验室开放课题资助
作者简介:

作者简介 孟凡帝,男,1988年,博士生

引用本文:

孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 561-566.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.197      或      https://www.jcscp.org/CN/Y2017/V37/I6/561

图1  装有预埋微电极的涂层/金属电极试样示意图
图2  适用于电化学阻抗测试的双微电极装置示意图
图3  通过传统测量方式与双微电极试样测试的浸泡不同时间涂层的EIS
Time / h Conventional Microelectrode
24 7.727×109 7.912×109
72 1.195×109 0.907×109
144 6.664×107 6.913×107
表1  常规的及预埋微电极的涂层/金属电极试样在浸泡不同时间后所测得的低频阻抗模值|Z |0.01 Hz
Timeh Without embedded microelectrode With two embedded microelectrodes
2 1.62×1011 ---
26 9.41×1010 4.06×1010
236 2.39×108 1.60×108
表2  浸泡不同时间后采用两种测量方式获得的涂层的低频阻抗模值|Z |0.01 Hz
图4  不同幅值交变压力加速实验下微电极装置测得的涂层阻抗模值变化
图5  不同幅值交变压力加速实验240 h后金属基体的宏观表面形貌
[1] Akbarinezhad E, Bahremandi M, Faridi H R, et al.Another approach for ranking and evaluating organic paint coatings via electrochemical impedance spectroscopy[J]. Corros. Sci., 2009, 51: 356
[2] Nikravesh B, Ramezanzadeh B, Sarabi A A, et al.Evaluation of the corrosion resistance of an epoxy-polyamide coating containing different ratios of micaceous iron oxide/Al pigments[J]. Corros. Sci., 2011, 53: 1592
[3] Tian W L, Meng F D, Liu L, et al.The failure behaviour of a commercial highly pigmented epoxy coating under marine alternating hydrostatic pressure[J]. Prog. Org. Coat., 2015, 82: 101
[4] Tian W L, Liu L, Meng F D, et al.The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure[J]. Corros. Sci., 2014, 86: 81
[5] Meng F D, Liu L, Tian W L, et al.The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure[J]. Corros. Sci., 2015, 101: 139
[6] Liu L, Cui Y, Li Y, et al.Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure[J]. Electrochim. Acta, 2012, 62: 42
[7] Mansfeld F, Tsai C H.Determination of coating deterioration with EIS: I basic relationships[J]. Corrosion, 1991, 47: 958
[8] Titz J, Wagner G H, Sp?hn H, et al.Characterization of organic coatings on metal substrates by electrochemical impedance spectroscopy[J]. Corrosion, 1990, 46: 221
[9] Liu B, Wang H B, Fang Z G.Development trends of anti-corrosion coatings for naval vessels[J]. Corros. Sci. Prot. Technol., 2007, 19: 287(刘斌, 王虹斌, 方志刚. 舰艇防腐蚀涂料的发展方向[J]. 腐蚀科学与防护技术, 2007, 19: 287)
[10] Simpson T C, Moran P J, Hampel H, et al.Electrochemical monitoring of organic coating degradation during atmospheric or vapor phase exposure[J]. Corrosion, 1990, 46: 331
[11] Curioni M, Cottis R A, Thompson G E.Interpretation of electrochemical noise generated by multiple electrodes[J]. Corrosion, 2013, 69: 158
[12] Maile F J, Schauer T, Eisenbach C D.Evaluation of corrosion and protection of coated metals with local ion concentration technique (LICT)[J]. Prog. Org. Coat., 2000, 38: 111
[13] Panova A A, Pantano P, Walt D R.In situ fluorescence imaging of localized corrosion with a pH-sensitive imaging fiber[J]. Anal. Chem., 1997, 69: 1635
[14] Xiang J, Liu B, Liu B, et al.A self-terminated electrochemical fabrication of electrode pairs with angstrom-sized gaps[J]. Electrochem. Commun., 2006, 8: 577
[15] Chen L C, Ho K C.Interpretations of voltammograms in a typical two-electrode cell: Application to complementary electrochromic systems[J]. Electrochim. Acta, 2001, 46: 2159
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[3] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[6] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[8] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[9] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[10] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[11] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[12] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[13] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[14] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[15] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.