Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 795-803    DOI: 10.11902/1005.4537.2020.230
  研究报告 本期目录 | 过刊浏览 |
成品油输送管道微生物腐蚀案例分析
张斐1, 王海涛2, 何勇君3, 张天遂1, 刘宏芳1()
1.华中科技大学化学与化工学院 材料化学与服役失效湖北省重点实验室 武汉 430074
2.中国特种设备检测研究院 北京 100029
3.中国石化销售有限公司华南分公司 广州 510000
Case Analysis of Microbial Corrosion in Product Oil Pipeline
ZHANG Fei1, WANG Haitao2, HE Yongjun3, ZHANG Tiansui1, LIU Hongfang1()
1.Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.China Special Equipment Inspection and Research Institute, Beijing 100029, China
3.SINOPEC Sales Co. Ltd. , (South China), Guangzhou 510000, China
全文: PDF(7093 KB)   HTML
摘要: 

通过分析成品油输送管线腐蚀产物组成、酸溶特性,利用细菌培养法培养和测定了腐蚀产物中与金属材料微生物腐蚀相关的细菌如硫酸盐还原菌 (SRB)、铁细菌 (IOB) 的含量。模拟成品油输送管道厌氧环境和微量水存在情况,利用电化学极化曲线和电化学阻抗法、腐蚀失重法结合表面分析技术研究了X60管线钢在含SRB介质中的腐蚀行为。结果表明,多数管线腐蚀产物中存在SRB和IOB,管道沉积物以Fe3O4、FeS、Fe(OH)3、Fe2O3等形式存在。在含有成品油和SRB菌液的模拟实验中,X60钢表面形成大量疏松多孔的腐蚀产物和SRB细菌的聚集体,腐蚀程度较空白对照组严重,且腐蚀形态呈现点蚀特征,点蚀坑深度高达25.1 μm/14 d。

关键词 成品油输送管线内腐蚀硫酸盐还原菌铁细菌X60碳钢微生物腐蚀    
Abstract

The composition and acid-solubility characteristics of corrosion products in several product oil pipelines were investigated, and the content of bacteria related to microbiologically influenced corrosion of metal materials such as sulfate reducing bacteria (SRB) and iron bacteria (IOB) in corrosion products were cultured and determined by bacterial culture method. The corrosion behavior of X60 pipeline steel in SRB-containing medium was studied by means of electrochemical polarization curve measurement, alternating impedance method, corrosion mass loss method and surface analysis technology. The results show that SRB and IOB exist in most pipeline corrosion products, and the pipeline sediments consist mainly of Fe3O4, FeS, Fe(OH)3, and Fe2O3. The results of corrosion test in a simulated solution containing product oil and SRB bacterial revealed that a large number of loose and porous corrosion products and SRB bacterial aggregation were formed on the surface of X60 steel, while the corrosion degree was more serious than that of the blank control group. Moreover, the corrosion morphology of the steel showed pitting characteristics with pit depth up to 25.1 μm/14 d.

Key wordsinternal corrosion of product oil pipeline    sulfate-reducing bacteria (SRB)    iron oxidized bacteria (IOB)    X60 carbon steel    microbiologically influenced corrosion (MIC)
收稿日期: 2020-12-02     
ZTFLH:  TG174  
基金资助:中国石油化工股份有限公司项目(319008-8)
通讯作者: 刘宏芳     E-mail: liuhf@hust.edu.cn
Corresponding author: LIU Hongfang     E-mail: liuhf@hust.edu.cn
作者简介: 张斐,男,1995年生,硕士生
王海涛,男,1982年生,博士,高级工程师

引用本文:

张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
Fei ZHANG, Haitao WANG, Yongjun HE, Tiansui ZHANG, Hongfang LIU. Case Analysis of Microbial Corrosion in Product Oil Pipeline. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 795-803.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.230      或      https://www.jcscp.org/CN/Y2021/V41/I6/795

SampleRate of acid insolubleCompositions analysisSRB content mLIOB content mL
Jianshui89%Fe3O4, FeS, Fe2O31.0×1051.0×103
Huanan78%Fe3O4, FeS1.0×1051.0×104
Maoming73.5%Fe3O4, FeS, Fe2O3, FeOOH1.0×1061.0×103
Kunming diesel63.5%Fe(OH)3, Fe2O3, FeOOHUndetected
Kunming gasoline89%Fe3O4
表1  酸溶实验、XRD成分分析、微生物培养及细菌含量测定表
图1  管道腐蚀沉积物的XRD图
图2  X60钢试样在含SRB菌液中浸泡不同时间的SEM像
图3  X60钢试样在4种不同测试体系中的电化学阻抗谱
图4  电化学阻抗拟合等效电路图
ConditionRs / Ω·cm2Qf / 10-4 F·cm-2Qf-nRf / Ω·cm2Cdl / 10-2 F·cm-2Cdl-nRct / Ω·cm2Rp / Ω·cm2
Medium1 d8.241.52×10-40.942273482.71×10-40.8411535142699
3 d6.8472.15×10-40.946138873.11×10-30.927356217449
5 d7.0152.42×10-40.97884463.45×10-40.873937317819
8 d6.9153.12×10-40.945176798.59×10-40.943629823977
11 d7.743.49×10-40.949356768.23×10-40.9221179847474
14 d7.634.40×10-40.953472056.29×10-40.9781819365398
Oil-Medium1 d9.5391.74×10-40.943224102.82×10-40.8541483737247
3 d8.3622.12×10-40.94760212.15×10-40.871860014621
5 d8.3363.05×10-40.945112897.57×10-40.875401615305
8 d11.113.68×10-40.950336738.92×10-40.9551017743850
11 d10.724.39×10-40.943302373.94×10-40.9531525245489
14 d11.394.65×10-40.952392244.18×10-40.9381896658190
SRB solution1 d17.744.31×10-40.86684.21.19×10-60.21391449228.2
3 d11.159.44×10-30.811653.96.11×10-30.89135674220.9
5 d11.86.74×10-30.85617803.98×10-30.87271598939
8 d13.313.74×10-30.92479231.95×10-30.896374911672
11 d13.392.46×10-30.926108441.09×10-40.9131756528409
14 d13.732.19×10-30.925186025.14×10-40.9152116039762
Oil-SRB solution1 d18.18.01×10-30.95815027.53×10-50.3031180213304
3 d15.791.68×10-30.93443561.58×10-20.77312685624
5 d12.946.57×10-30.92165237.59×10-50.9751350020023
8 d14.515.25×10-30.92478436.07×10-50.9611479922642
11 d13.435.00×10-30.94933513.87×10-40.9761553018881
14 d13.974.58×10-30.98715769.81×10-40.9331754819124
表2  4种测试体系中X60碳钢的电化学阻抗图拟合所得电化学参数
图5  X60碳钢在不同测试体系中电化学阻抗拟合Rp随时间变化图
图6  X60钢在4种不同体系中浸泡14 d后的动电位极化曲线
Conditionβa / V·dec-1βc / V·dec-1Ecorr, SCE / VIcorr / A·cm-2
Medium64.36-41.663-0.7453.02×10-7
Medium contains oil18.69-38.11-0.7595.69×10-7
SRB solution177.12-46.142-0.8137.11×10-7
SRB solution contains oil225.24-43.497-0.9502.41×10-6
表3  X60钢在几种不同体系中浸泡14 d后的动电位极化曲线拟合结果
图7  X60碳钢在4种腐蚀体系中浸泡14 d后的腐蚀产物膜形貌图
图8  X60碳钢在几种腐蚀体系中浸泡14 d后的腐蚀产物EDS分析
图9  X60碳钢浸泡14 d后去除腐蚀产物后的3D形貌
图10  X60钢试样在4种腐蚀体系中浸泡14 d后的失重图
1 Xiong K J. Study on two-phase flow characteristics of diesel oil carrying water [D]. Chengdu: Southwest Petroleum University, 2017
1 熊柯杰. 柴油携水两相流动特性研究 [D]. 成都: 西南石油大学, 2017
2 Qiao H F. Analysis of the status quo of refined oil pipeline corrosion and the design protection systems [D]. Xi’an: Xi'an Shiyou University, 2014
2 乔焕芳. 延-西成品油管线腐蚀现状的分析及防护系统的设计 [D]. 西安: 西安石油大学, 2014
3 Zhu Q Z, Duan P X, Wang H J, et al. Current situations and future development of oil and gas pipelines in the world [J]. Oil Gas Storage Trans., 2015, 34: 1262
3 祝悫智, 段沛夏, 王红菊等. 全球油气管道建设现状及发展趋势 [J]. 油气储运, 2015, 34: 1262
4 Wang D Z, Liu J H, Wang C X, et al. Test and analysis on sediment in Lanzhou-Chengdu-Chongqing products pipeline [J]. Oil Gas Storage Trans., 2005, 24(2): 59
4 王德增, 刘井会, 王彩霞等. 对成品油管道中沉积物的分析 [J]. 油气储运, 2005, 24(2): 59
5 Been J, Place T D, Holm M. Evaluating corrosion and inhibition under sludge in large diameter crude oil pipelines [A]. Proceedings of the Corrosion 2010 [C]. San Antonio, 2010, 756
6 Liu M, Jiang Y W, Han S, et al. Internal corrosion cause analysis of a products pipeline before putting into operation [J]. Corros. Sci. Prot. Technol., 2018, 30: 496
6 刘猛, 姜有文, 韩朔等. 成品油管道投产前内腐蚀原因分析 [J]. 腐蚀科学与防护技术, 2018, 30: 496
7 Yustina M P, Wolfgang W S, Tjandra S, et al. Evaluation of Bio-Corrosion on carbon steel by Bacillus Megaterium in biodiesel and diesel oil mixture [J]. J. Eng. Technol. Sci., 2020, 52: 370
8 Zhang Y, Li Y. Microbiological corrosion and protection of oil and gas pipeline [J]. Equip. Environ. Eng., 2008, 5(5): 45
8 张燕, 李颖. 输油气管线的微生物腐蚀与防护 [J]. 装备环境工程, 2008, 5(5): 45
9 Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol, 2015, 27: 409
9 刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
10 Liu H W, Liu H F, Qin S, et al. Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield [J]. Corros. Sci. Prot. Technol, 2015, 27: 7
10 刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查 [J]. 腐蚀科学与防护技术, 2015, 27: 7
11 Yu H H. Corrosion and corrosion protection of product oil tanks and long-distance pipelines [J]. Corros. Prot. Petrochem. Ind., 2013, 30(4): 17
11 余杭辉. 国内成品油储罐和长输管线腐蚀现状与防护 [J]. 石油化工腐蚀与防护, 2013, 30(4): 17
12 Liu L. Corrosion Behavior of Sulfate Reducing Bacteria in X52 Oil Pipeline [D]. Chengdu: Southwest Petroleum University, 2016
12 刘黎. X52输油管道硫酸盐还原菌腐蚀行为研究 [D]. 成都: 西南石油大学, 2016
13 Wang Z Q, Xu W C, Zhou Z Y, et al. Microbial corrosion behavior of X65 pipeline steel in product pipeline sediments [J]. Surf. Technol., 2020, 49(7): 245
13 王正泉, 徐玮辰, 周子扬等. X65管线钢在成品油管道沉积物中的微生物腐蚀行为 [J]. 表面技术, 2020, 49(7): 245
14 Jing J Q, Liu L, Xie J F, et al. Effect of sulfate reducing bacteria from corrosion scale of oil pipeline on corrosion behavior of Q235 steel [J]. Corros. Prot., 2018, 39(1): 6
14 敬加强, 刘黎, 谢俊峰等. 输油管道腐蚀垢样中硫酸盐还原菌对Q235钢腐蚀行为的影响 [J]. 腐蚀与防护, 2018, 39(1): 6
15 Song X Q, Yang Y X, Yu D L, et al. Studies on the impact of fluid flow on the microbial corrosion behavior of product oil pipelines [J]. J. Pet. Sci. Eng., 2016, 146: 803
[1] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[2] 吕美英, 李振欣, 杜敏, 万紫轩. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[3] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[4] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[5] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[6] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[7] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[8] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[11] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[12] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[13] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[14] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[15] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.