Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 565-570    DOI: 10.11902/1005.4537.2020.191
  研究报告 本期目录 | 过刊浏览 |
Q345NS钢焊接接头耐硫酸腐蚀特性研究
石践(), 胡学文, 何博, 杨峥, 郭锐, 汪飞
马鞍山钢铁股份有限公司技术中心 马鞍山 243000
Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint
SHI Jian(), HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei
Technology Center of Masteel, Ma'anshan Iron and Steel Co. Ltd. , Ma'anshan 243000, China
全文: PDF(18709 KB)   HTML
摘要: 

采用硫酸浸泡实验,研究了Q345NS钢焊接接头耐硫酸腐蚀行为,并对焊接过程中合金元素扩散和耐硫酸腐蚀的行为与机理进行了分析。结果表明:焊接过程中,母材与焊材之间的元素浓度差促使母材中Cr、Cu、Sb等合金元素向焊缝内扩散富集,同时,焊接过程中的高温会促进该进程,导致热影响区靠近母材一侧形成了合金元素贫瘠带;焊缝处高温导致Cu、Sb的二次分配,含量差异性进一步扩大;Cu、Sb在腐蚀层的大量富集,促进腐蚀层致密化,提升了材料耐硫酸腐蚀性能。

关键词 焊接接头耐硫酸腐蚀元素扩散致密Q345NS钢    
Abstract

The corrosion behavior of weld joints of Q345NS steel in sulfuric acid was studied via immersion test, and proper post characterization. The results show that due to the welding process, the element concentration difference between the base metal and the weld seam leads to that alloy elements such as Cr, Cu, Sb in the base metal diffuse towards and enrich in the weld seam. At the same time, the high temperature in the welding process will promote that process, resulting in the formation of a depletion zone of alloying elements on the side of the heat-affected zone near the base metal. The high temperature during the welding leads to the secondary allocation of Cu and Sb, and their content difference is further expanded. The large enrichment of Cu and Sb in the corrosion product scale can promote the densification of the corrosion product scale and improve the corrosion resistance to sulfuric acid for the weld Q345NS steel.

Key wordswelded joint    sulfuric acid corrosion resistance    element diffusion    densification    Q345NS steel
收稿日期: 2020-10-13     
ZTFLH:  TG172  
通讯作者: 石践     E-mail: stoneshi810@163.com
Corresponding author: SHI Jian     E-mail: stoneshi810@163.com
作者简介: 石践,1991年生,硕士,工程师

引用本文:

石践, 胡学文, 何博, 杨峥, 郭锐, 汪飞. Q345NS钢焊接接头耐硫酸腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
Jian SHI, Xuewen HU, Bo HE, Zheng YANG, Rui GUO, Fei WANG. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 565-570.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.191      或      https://www.jcscp.org/CN/Y2021/V41/I4/565

Test materialCSiMnPSCrNiCuSbFe
Q345NS≤0.10.330.770.0160.004≤1.0≤0.4≤0.6≤0.15Bal.
TH550-NQ-Ⅲ0.090.181.440.0190.0060.370.280.25---Bal.
表1  试验材料的化学成分
Welding positionWelding current AArc voltage VWelding speed mm·s-1
Internal welding620±6033±20.9±0.1
outside welding750±7034±2
表2  焊接工艺参数
图1  Q345NS钢焊接接头金相照片
图2  Q345NS钢焊接接头与母材腐蚀速率
图3  Q345NS钢焊接接头与母材酸洗前后腐蚀形貌
图4  Q345NS钢焊接接头微观腐蚀形貌
图5  Q345NS钢焊接接头3D腐蚀形貌
图6  Q345NS钢焊接接头不同区域元素含量变化图
图7  Q345NS钢焊接接头元素扩散模型
图8  Q345NS钢焊接接头在20%H2SO4溶液中腐蚀24 h后腐蚀产物
PointOSiMnPSCrNiCuSbFe
18.260.721.090.500.681.511.0215.272.1368.34
211.68/0.731.040.751.181.6425.814.4950.73
326.130.954.790.980.850.841.6023.564.0232.82
表3  Q345NS焊接接头腐蚀产物的EDS分析
1 Zhang Y, Sun W Q, Ye Y H. Overview on rapid corrosion of gas pipe with dry-type blast furnace gas dedusting technology [A]. Proceedings of the 7th National Conference on Energy and Thermal Engineering [C]. Chongqing, 2013: 321
1 张琰, 孙文强, 叶宇衡. 干法除尘高炉煤气管道的腐蚀问题综述 [A]. 第七届全国能源与热工学术年会论文集 [C]. 重庆, 2013: 321
2 Yang Z. Discussion on rapid corrosion of gas piping occurring in application of dry-type blast furnace gas dedusting technology [J]. World Iron Steel, 2010, 10(5): 43
2 杨镇. 高炉煤气干法除尘中煤气管道快速腐蚀问题探讨 [J]. 世界钢铁, 2010, 10(5): 43
3 Chen X D, Deng W L. Analysis of corrosion failure for gas piping conveying dry-dedusted gas and discussion about countermeasures [J]. Energy Metall. Ind., 2011, 30(6): 16
3 陈小东, 邓万里. 高炉干法除尘后煤气管道腐蚀情况分析及对策 [J]. 冶金能源, 2011, 30(6): 16
4 Su F, Tang X G. Application of anti-acid corrosion technique in dry dusting system of blast furnace gas [J]. Metall. Power, 2010, (1): 20
4 苏峰, 唐效国. 干法除尘高炉煤气酸性腐蚀防控技术在莱钢的应用及探索 [J]. 冶金动力, 2010, (1): 20
5 Guan X Y, Ma Z F, Xiong S L. Causes of corrosion of blast furnace gas pipe and anticorrosive measures [J]. Metall. Power, 2011, (6): 25
5 官习艳, 马作仿, 熊树林. 高炉煤气管道的腐蚀及预防措施 [J]. 冶金动力, 2011, (6): 25
6 Chen C, Ding C J. Research on corrosion mechanism and anticorrosive measures of gas piping [J]. Ind. Heat., 2015, 44(1): 41
6 陈超, 丁翠娇. 煤气管道腐蚀机理与预防措施研究现状 [J]. 工业加热, 2015, 44(1): 41
7 Fan Z, Liu J Y, Li S L, et al. Microstructure and seawater corrosion to welding joint of X70 pipeline steel [J]. J. Southwest Petrol. Univ. (Sci. Technol. Ed.), 2009, 31(5): 171
7 范舟, 刘建仪, 李士伦等. X70管线钢焊接接头组织及其海水腐蚀规律 [J]. 西南石油大学学报 (自然科学版), 2009, 31(5): 171
8 Li Y D, Tang X, Li Y. Research progress of localized corrosion of welded joints [J]. Mater. Rev., 2017, 31(11): 158
8 李亚东, 唐晓, 李焰. 焊接接头局部腐蚀的研究进展 [J]. 材料导报, 2017, 31(11): 158
9 Huang C, Huang F, Zhang Y, et al. Galvanic corrosion behavior for weld joint of high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 527
9 黄宸, 黄峰, 张宇等. 高强耐候钢焊接接头电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 527
10 Wang C J, Hu X W, Peng H, et al. Effect of heating temperature on shear strength of TA2/Q235B compound plate [J]. Hot Work. Technol., 2020, 49(10): 67
10 王承剑, 胡学文, 彭欢等. 加热温度对TA2/Q235B复合板剪切强度的影响 [J]. 热加工工艺, 2020, 49(10): 67
11 Ma T, Li H R, Gao J X, et al. Diffusion behavior of Cu in carbon steel and its influence on corrosion resistance of carbon steel [J]. Chin. J. Mater. Res., 2019, 33: 225
11 马涛, 李慧蓉, 高建新等. 铜在碳钢中扩散及其对碳钢耐腐蚀性的影响 [J]. 材料研究学报, 2019, 33: 225
12 Qian Y H, Li Z G, Yang A N. Application and properties of low alloying sulfuric acid dew point corrosion—resistant steels [J]. Spec. Steel, 2005, 26(5): 30
12 钱余海, 李自刚, 杨阿娜. 低合金耐硫酸露点腐蚀钢的性能和应用 [J]. 特殊钢, 2005, 26(5): 30
13 Zhang W, Ma Y P, Liu Y G, et al. Sulfuric-acid dew point corrosion-resistant steel [J]. Anhui Metall., 2009, (3): 25
13 张武, 马玉平, 刘永刚等. 耐硫酸露点腐蚀用钢的研究与应用综述 [J]. 安徽冶金, 2009, (3): 25
14 Le D P, Ji W S, Kim J G, et al. Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system [J]. Corros. Sci., 2008, 50: 1195
15 Ye X X, Zhou C, Zhang C. Corrosion performance of a new low alloy steel Cu-Sb-Mo for resisting dew-point corrosion induced by sulfuric acid and hydrochloric acid [J]. Corros. Sci. Prot. Technol., 2015, 27: 135
15 叶先祥, 周成, 张聪. 新型耐硫酸盐酸露点腐蚀钢的性能研究 [J]. 腐蚀科学与防护技术, 2015, 27: 135
16 Zhang C, Zhou C, Ye X X. The corrosion behavior of a new acid resistant steel in a concentrated sulphuric acid solution containing HCl [J]. Corros. Prot., 2015, 36: 599
16 张聪, 周成, 叶先祥. 新型耐酸钢在硫酸盐酸混合溶液中的腐蚀行为 [J]. 腐蚀与防护, 2015, 36: 599
[1] 孙晓光, 王子晗, 徐学旭, 韩晓辉, 李刚卿, 刘智勇. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[2] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[3] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[6] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[7] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[8] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[9] 崔学军,李晓飞,李特,林修洲. 负向电压对AZ31B镁合金表面微弧氧化膜结构和耐蚀性的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 137-142.
[10] 刘智勇, 万红霞, 李禅, 杜翠薇, 李晓刚, 刘翔. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比[J]. 中国腐蚀与防护学报, 2014, 34(4): 321-326.
[11] 邢云颖, 刘智勇, 杜翠薇, 李晓刚, 刘然克, 朱敏. H2S浓度和pH值对X65海管钢焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 231-236.
[12] 王勇, 田颖, 郭泉忠, 郭兴华, 杜克勤, 王福会. 阴极电流密度对LY12铝合金微弧氧化膜致密性的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 475-480.
[13] 郭泉忠, 张伟,杜克勤,王荣. 电化学阻抗谱研究负向电压对AZ31B镁合金微弧氧化陶瓷层致密性的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 467-472.
[14] 孔德军,吴永忠,龙丹,周朝政. 激光冲击处理对X70管线钢焊接接头H2S应力腐蚀影响[J]. 中国腐蚀与防护学报, 2011, 31(2): 125-129.
[15] 倪红芳; 凌祥; 彭薇薇 . 玻璃喷丸处理提高304不锈钢焊接接头抗应力腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2005, 25(3): 152-156 .