Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (4): 321-326    DOI: 10.11902/1005.4537.2013.156
  论文 本期目录 | 过刊浏览 |
X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比
刘智勇1, 万红霞1, 李禅2, 杜翠薇1, 李晓刚1, 刘翔1
1. 北京科技大学腐蚀与防护中心 教育部腐蚀与防护重点实验室 北京 100083; 2. 环境保护部核与辐射安全中心 北京 100082
Comparative Study on Corrosion of X65 Pipeline Steel Welded Joint in Simulated Shallow and Deep Sea Environment
LIU Zhiyong1, WAN Hongxia1, LI Chan2, DU Cuiwei1, LI Xiaogang1, LIU Xiang1
1. Key Lab of Corrosion, Erosion and Surface Technique Beijing, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China; 2. Nuclear and Radiation Safety Center, Ministry of Environmental Protection, Beijing 100082, China
全文: PDF(2557 KB)   HTML
摘要: 在实验室模拟条件下,采用失重法及电化学等方法并结合腐蚀形貌显微观察,研究了X65钢焊接接头在浅表海水和深海 (1000 m) 环境中的短期腐蚀行为及其机理。结果表明,X65钢焊接接头在浅表海水环境下的腐蚀速率大于深海环境下的腐蚀速率,浅表海水环境以点蚀为主,深海环境只在熔合线附近腐蚀相对较快,焊缝区腐蚀不明显;在模拟浅表海水和深海环境下,热影响区 (HAZ) 的腐蚀电位均低于焊缝和母材区,导致焊缝区域存在电偶效应,加速了HAZ的腐蚀,形成较厚的腐蚀产物膜。
关键词 管线钢焊接接头海水腐蚀    
Abstract:The short-term corrosion behavior of the welded joint of X65 pipeline steel was comparatively studied in artificial laboratory environments, which aims to simulate the real environment of shallow and deep sea respectively, by using mass loss test, potentiodynamic polarization curve measurement and corrosion morphological observation by scanning electron microscopy (SEM). Results show that the corrosion rate of the welded joint in simulated shallow sea water was faster than that in the simulated deep sea environment. In the simulated shallow sea environment the weld joint exhibited mainly pitting corrosion; however in the simulated deep sea environment, relatively serious corrosion occurred near the fusion-line (FL) while non obvious corrosion could be observed on the welded zone. The corrosion potential of heat affected zone (HAZ) was lower than that of the welded zone and matrix of X65 pipeline steel both in simulated deep and shallow sea environments, which caused galvanic effect in welded zone and accelerated the corrosion rate of HAZ. Thereby the formed corrosion product film on HAZ was thicker with a larger charge-transfer resistance Rt.
Key wordspipeline steel    welded joint    sea corrosion
收稿日期: 2013-09-12     
ZTFLH:  TG172.5  
基金资助:国家科技支撑计划项目 (2011BAK06B01)和中央高校基本科研业务费专项资金项目 (FRF-TP-12-148A) 资助
通讯作者: 通讯作者:刘智勇,E-mail:liuzhiyong7804@126.com     E-mail: liuzhiyong7804@126.com
作者简介: 刘智勇,男,1978年生,讲师,研究方向为石油化工领域材料腐蚀与防护

引用本文:

刘智勇, 万红霞, 李禅, 杜翠薇, 李晓刚, 刘翔. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比[J]. 中国腐蚀与防护学报, 2014, 34(4): 321-326.
LIU Zhiyong, WAN Hongxia, LI Chan, DU Cuiwei, LI Xiaogang, LIU Xiang. Comparative Study on Corrosion of X65 Pipeline Steel Welded Joint in Simulated Shallow and Deep Sea Environment. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 321-326.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.156      或      https://www.jcscp.org/CN/Y2014/V34/I4/321

[1] Zhao D Y, Yu J X, Wang C, et al. Risk-based assessment method for submarine pipeline [J]. Ocean Technol., 2010, 29(1): 56-58 (赵冬岩, 余建星, 王琮等. 基于风险的海底管道安全评估方法研究 [J]. 海洋技术, 2010, 29(1): 56-58)
[2] Schumacher M. Sea Water Corrosion Handbook [M]. New Jersey, USA: Noyes Data Corporation, 1979
[3] Dexter S C. Hand Book of Oceanographic Materials [M]. New York: John Wiley & Sons, 1979
[4] Chandler K A. Marine and Offshore Corrosion [M]. London: Butterworths, 1985
[5] Du C W, Liu Z Y, Liang P, et al. Short-term corrosion behavior of X70 pipeline steel with different microstructure in Ku'erle soil with saturated water [J]. Heat Treat. Met., 2008, 33(6): 80-84 (杜翠薇, 刘智勇, 梁平等. 不同组织X70钢在库尔勒含饱和水土壤中的短期腐蚀行为 [J]. 金属热处理, 2008, 33(6): 80-84)
[6] Di G L, Liu Z Y, Du C W, et al. Stress corrosion cracking of X70 steel with different microstructures in acid soil simulation solution [J]. Corros. Prot., 2009, 30(3): 149-151 (翟国丽, 刘智勇, 杜翠薇等. 不同组织X70钢在酸性土壤模拟溶液中的应力腐蚀敏感性 [J]. 腐蚀与防护, 2009, 30(3): 149-151)
[7] Fan Z, Liu J Y, Li S L, et al. Microstructure and seawater corrosion to welding joint of X70 pipeline steel [J]. J. Southwest Petroleum Univ. (Nat. Sci.), 2009, 31(5): 171-174 (范舟, 刘建仪, 李士伦等. X70管线钢焊接接头组织及其海水腐蚀规律 [J]. 西南石油大学学报 (自然科学版), 2009, 31(5): 171-174)
[8] Zhou J Q, Wang H Z, Ma Q H, et al. The electrochemical impedance spectroscopy of seawater piping brass welded joint in artificial seawater [J]. Corros. Prot., 2007, 28(8): 403-406 (周建奇, 王宏智, 马青华等. 海水管路黄铜焊接接头在人工海水中的电化学阻抗谱 [J]. 腐蚀与防护, 2007, 28(8): 403-406)
[9] Xu L Y, Jing H Y, Cao J, et al. H 2 S stress corrosion investigation of pipeline steel welded joints [J]. Trans. Chin. Weld Inst., 2010, 31(1):12-17 (徐连勇, 荆洪阳, 曹军等. 管线钢焊接接头H 2 S应力腐蚀试验分析 [J]. 焊接学报, 2010, 31(1): 12-17)
[10] 23(6): 75-78 (金晓军, 霍立兴, 张玉凤. X65管线钢焊缝金属断裂韧度的统计分布 [J]. 焊接学报, 2002, 23(6): 75-78)
[11] Wei Y H, Lu J Z. Deep sea environment of carbon steel corrosion and protection [J]. Total Corros. Control, 2012, 26(3): 1-4 (韦云汉, 芦金柱. 深海环境碳钢的腐蚀与防护 [J]. 全面腐蚀控制, 2012, 26(3): 1-4)
[12] Ma Eid N. Localized corrosion at welds in structural under desalination plant conditions, Part1: effect of surface roughness and type of welding electrode [J]. Desalination, 1989, 73: 397-406
[13] Melchers R E. Pitting corrosion of mild steel in marine immersion environment-Part 2: Variability of maximum pit depth [J]. Corrosion, 2004, 60(10): 937-944
[14] Melchers R E. Statistical characterization of pitting corrosion-Part1: Data analysis [J]. Corrosion, 2005, 61(7): 655-665
[15] Jia Z J, Du C W, Li X G. Effect of temperature on electrochemical corrosion behavior of N80 steel in CO 2 saturated NaCl solution [J]. Corros. Prot., 2011, 32(8): 613-616 (贾志军, 杜翠薇, 李晓刚. 温度对N80钢在CO 2 饱和的NaCl溶液中的腐蚀电化学行为的影响 [J]. 腐蚀与防护, 2011, 32(8): 613-616)
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[4] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[6] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[8] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[9] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[10] 袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[11] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[12] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[13] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[14] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[15] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.