Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (3): 307-317    DOI: 10.11902/1005.4537.2020.061
  研究报告 本期目录 | 过刊浏览 |
静水压力对X70钢在海洋环境中腐蚀行为影响研究
林朝晖, 明南希, 何川, 郑平, 陈旭()
辽宁石油化工大学石油天然气工程学院 抚顺 113001
Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water
LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu()
School of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
全文: PDF(18034 KB)   HTML
摘要: 

利用高温高压反应釜,采用失重、电化学实验和慢应变拉伸方法,结合X射线衍射 (XRD) 、扫描电子显微镜 (SEM) 和能量散射X射线谱 (EDS) 等手段研究了0~3 MPa静水压力对X70钢在模拟海洋环境中的腐蚀行为的影响。结果表明:静水压力在0~2 MPa范围内,X70钢的腐蚀形态表现为局部腐蚀,腐蚀产物主要成分为FeOOH。静水压力为3 MPa时,腐蚀形态倾向于均匀腐蚀,腐蚀产物除FeOOH外,还出现少量的Fe3O4。随着静水压力的增加,X70钢的腐蚀速率先增加后减小,在2 MPa时达到最大。静水压力在0~2 MPa范围内,X70钢SCC敏感性随着压力增加而增加;继续增加到3 MPa时,SCC敏感性有降低的趋势。X70钢在模拟海洋环境溶液中应力腐蚀开裂敏感性取决于金属表面点蚀的状况,而不一定正相关于静水压力。随静水压力的增加,X70钢表面的阳极溶解被促进,同时也促进更多的氢原子进入钢中,其应力腐蚀开裂机制是由阳极溶解和氢致开裂共同控制的混合机制。

关键词 X70钢海洋环境静水压力电化学行为应力腐蚀开裂    
Abstract

The influence of hydrostatic pressure on the corrosion behavior of X70 steel in simulated sea water was studied in the pressure range of 0~3 MPa by means of high temperature and high pressure reaction kettle, mass loss measurement, electrochemical means and slow strain tensile method, as well as XRD, SEM and EDS. The results showed that X70 steel suffered from localized corrosion and the main component of the corrosion product was FeOOH in the pressure range of 0~2 MPa. When the hydrostatic pressure was 3 MPa, the corrosion morphology turned to be general corrosion, and a small amount of Fe3O4 appeared in addition to FeOOH in the corrosion product. With the increase of hydrostatic pressure, the corrosion rate of X70 steel increased first and then decreased, and reached the maximum by 2 MPa. When the hydrostatic pressure was in the range of 0~2 MPa, the stress corrosion cracking (SCC) sensitivity of X70 steel increased with the increasing pressure, whereas, as the pressure increase up to 3 MPa, the SCC sensitivity decreased. The SCC sensitivity of X70 steel in the simulated sea water depended on the pitting degree on the steel surface, but not necessarily have a positive correlation to the hydrostatic pressure. With the increase of hydrostatic pressure, the anodic dissolution of X70 steel surface was promoted, and more hydrogen atoms were promoted to enter the steel. The SCC process of X70 steel in the simulated sea water could be ascribed to a mixed mechanism controlled by both anodic dissolution and hydrogen induced cracking.

Key wordsX70 steel    marine environment    hydrostatic pressure    electrochemical behavior    stress corrosion cracking
收稿日期: 2020-04-07     
ZTFLH:  TG147  
基金资助:教育部“春晖”国际合作计划项目,辽宁省教育厅重点项目(L2017LZD004)
通讯作者: 陈旭     E-mail: cx0402@sina.com
Corresponding author: CHEN Xu     E-mail: cx0402@sina.com
作者简介: 林朝晖,女,1995年生,硕士生

引用本文:

林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
Zhaohui LIN, Nanxi MING, Chuan HE, Ping ZHENG, Xu CHEN. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 307-317.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.061      或      https://www.jcscp.org/CN/Y2021/V41/I3/307

图1  X70钢的显微组织图
图2  慢应变速率拉伸实验试样示意图
图3  X70钢在不同静水压力条件下的腐蚀速率
图4  X70钢在不同静水压力条件下的腐蚀形貌
图5  X70钢在不同静水压力条件下腐蚀168 h后的XRD谱
图6  X70钢在不同压力下腐蚀168 h后的SEM形貌和EDS谱
图7  X70钢在不同静水压力下去除腐蚀产物后的SEM形貌
图8  X70钢在不同静水压力下的极化曲线图
P / MPaIcorr / μA/cm2Ecorr / Vba / V·dec-1bc / V·dec-1
02.45-0.8040.070.09
12.63-0.8300.100.07
23.80-0.8070.120.06
32.57-0.7960.070.07
表1  X70钢在不同静水压力下的极化曲线拟合结果
图9  X70钢在不同静水压力下的EIS图
图10  X70钢在不同静水压力条件下的EIS等效电路图
P / MPaRs / Ω·cm2Qf / F·cm-2n-QfRf / Ω·cm2Qdl / F·cm-2n-QdlRct / Ω·cm2L / H·cm-2RL / Ω·cm2
09.722.04×10-20.370.776.57×10-516.242.23×10-2---
19.692.61×10-20.320.905.39×10-516.102.31×10-2---
27.996.55×10-41.000.018.34×10-20.824.401.41×10-21.45
39.273.45×10-41.000.121.20×10-20.885.558.85×10-31.93
表2  X70钢在不同静水压力条件下的电化学阻抗拟合结果
图11  X70钢在不同静水压力下的SSRT曲线图
图12  X70钢在不同静水压力下的伸长率 (δ%) 与断面收缩率 (ψ%) 图
图13  X70钢在不同静水压力下的断口形貌
图14  X70钢在不同静水压力下的侧断口形貌
1 Liu Z Y, Wan H X, Li C, et al. Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep sea environment [J]. J. Chin. Soc Corros. Prot., 2014, 34: 321
1 刘智勇, 万红霞, 李禅等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比 [J]. 中国腐蚀与防护学报, 2014, 34: 321
2 Wang G F, Chen X, Gao F J, et al. Corrosion mechanism of X70 pipeline steel in different Cl- concentration [J]. Hot Work. Technol., 2015, 44(22): 34
2 王冠夫, 陈旭, 高凤姣等. X70管线钢在不同浓度Cl-溶液中腐蚀机理研究 [J]. 热加工工艺, 2015, 44(22): 34
3 Li H L. Developing pulse and prospect of oil and gas transmission pipe [J]. Welded Pipe Tube, 2004, 27(6): 1
3 李鹤林. 油气输送钢管的发展动向与展望 [J]. 焊管, 2004, 27(6): 1
4 Chen G M. Inspection and repair optimization of offshore structure for cracks [J]. J. Univ. Petroleum, China, 2000, 24(5): 73
4 陈国明. 海洋结构裂纹检测与维修优化 [J]. 中国石油大学学报 (自然科学版), 2000, 24(5): 73
5 Hou J, Guo W M, Deng C L. Influences of deep sea environmental factors on corrosion behavior of carbon steel [J]. Equip. Environ. Eng., 2008, 5(6): 82
5 侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响 [J]. 装备环境工程, 2008, 5(6): 82
6 Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
6 曹攀, 周婷婷, 白秀琴等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12
7 Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on corrosion behavior of X70 pipeline steel in a simulated deep-sea environment [J]. J. Electroanal. Chem., 2018, 822: 123
8 Bhosle N B, Wagh A B. The effect of organic matter associated with the corrosion products on the corrosion of mild steel in the Arabian Sea [J]. Corros. Sci., 1992, 33: 647
9 Al-Fozan S A, Malik A U. Effect of seawater level on corrosion behavior of different alloys [J]. Desalination, 2008, 228: 61
10 Beccaria A M, Poggi G, Arfelli M, et al. The effect of salt concentration on nickel corrosion behaviour in slightly alkaline solutions at different hydrostatic pressures [J]. Corros. Sci., 1993, 34: 989
11 Beccaria A M, Poggi G, Castello G. influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water [J]. Br. Corros. J., 1995, 30: 283
12 Hamdy A S, Beccaria A M, Temtchenko T. Corrosion protection of AA6061 T6 by fluoropolymer coatings in NaCl solution [J]. Surf. Coat. Technol., 2002, 155: 176
13 Beccaria A M, Poggi G. Influence of hydrostatic pressure on pitting of aluminium in sea water [J]. Br. Corros. J., 1985, 20: 183
14 Beccaria A M, Fiordiponti P, Mattogno G. The effect of hydrostatic pressure on the corrosion of nickel in slightly alkaline solutions containing Cl- ions [J]. Corros. Sci., 1989, 29: 403
15 Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the Corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
16 Yang Y G, Zhang T, Shao Y W, et al. New understanding of the effect of hydrostatic pressure on the corrosion of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2013, 73: 250
17 Liu B, Zhang J, Zhang T, et al. Influence of deep-sea environment on corrosion behavior of pure nickel-Ⅱ-stochastic analysis approaches to pitting of pure nickel under hydrostatic pressure [J]. Corros. Sci. Prot. Technol., 2010, 22: 85
17 刘斌, 张杰, 张涛等. 深海环境对纯镍腐蚀行为的影响Ⅱ-利用随机分析方法研究纯镍在静水压力下的点蚀行为 [J]. 腐蚀科学与防护技术, 2010, 22: 85
18 Yang Z X, Kan B, Li J X, et al. Pitting initiation and propagation of X70 pipeline steel exposed to chloride-containing environments [J]. Materials, 2017, 10: 1076
19 Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel [J]. J. Electrochem. Soc., 2013, 160: C89
20 Sun H J, Liu L, Li Y, et al. The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment [J]. Corros. Sci., 2013, 77: 77
21 Ding K K, Fan L, Guo W M, et al. Deep sea corrosion behavior of typical metal materials and research hotspot discussion [J]. Equip. Environ. Eng., 2019, 16(1): 117
21 丁康康, 范林, 郭为民等. 典型金属材料深海腐蚀行为规律与研究热点探讨 [J]. 装备环境工程, 2019, 16(1): 117
22 Du C W, Li X G, Liu Z Y, et al. Stress corrosion cracking susceptibility of X70 steel in simulation deep sea environment [A]. Conference Record of 2014 Marine Materials Corrosion and Protection Conference [C]. Beijing, 2014
22 杜翠薇, 李晓刚, 刘智勇等. X70钢在模拟深海环境中的应力腐蚀开裂敏感性研究 [A]. 海洋材料腐蚀与防护大会 [C]. 北京, 2014
23 Zhang T, Yang Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe–20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915
24 Luo Y Y. CNOOC: completed the independent laying of the longest submarine pipeline in China [J]. Petrol. Knowl, 2018, (2): 22
24 骆秧秧. 中国海油: 完成我国最长海底管线自主铺设 [J]. 石油知识, 2018, (2): 22
25 Sun H J, Liu L, Li Y, et al. Corrosion behavior of a high strength low alloy steel under hydrostatic pressure in deep ocean [A]. Conference Record of the 6th China Corrosion Conference Yinchuan [C]. Yinchuan, 2011
25 孙海静, 刘莉, 李瑛等. 低合金高强度钢在深海静水压力环境中腐蚀行为的研究 [A]. 第六届全国腐蚀大会论文集 [C]. 银川, 2011
26 Li J, Chen X, Li B W, et al. Effect of CO2 partial pressure on corrosion of 20 steel in oil-gas gathering and transporting [J]. J. Mater. Sci. Eng., 2018, 36: 589
26 李建, 陈旭, 李博文等. 20钢在集输系统中不同CO2分压下的腐蚀行为 [J]. 材料科学与工程学报, 2018, 36: 589
27 Liu Z Y, Jia J H, Du C W. Corrosion behavior of X80 and X52 steels in simulated seawater environments [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 327
27 刘智勇, 贾静焕, 杜翠薇. X80和X52管线钢在模拟海水环境中的腐蚀行为与规律 [J]. 中国腐蚀与防护学报, 2014, 34: 327
28 Yao X F, Xie F Q, Wu X Q, et al. Effects of Cl- concentration on stress corrosion cracking behaviors of super 13Cr tubing steels [J]. Mater. Rev., 2012, 26(18): 28
28 姚小飞, 谢发勤, 吴向清等. Cl-浓度对超级13Cr油管钢应力腐蚀开裂行为的影响 [J]. 材料导报, 2012, 26(18): 28
29 Song B Q, Chen X, Ma G Y, et al. Effect of SRB on SCC behaviour of X70 pipeline steel and its weld joint in near-neutral pH solution [J]. Trans. Mater. Heat Treat., 2016, 37(4): 122
29 宋博强, 陈旭, 马贵阳等. SRB对X70钢及其焊缝在近中性pH溶液中SCC行为的影响 [J]. 材料热处理学报, 2016, 37(4): 122
30 Chen X, Wu M, He C, et al. Effect of applied potential on SCC of X80 pipeline steel and its weld joint in Ku'erle soil simulated solution [J]. Acta Metall. Sin., 2010, 46: 951
30 陈旭, 吴明, 何川等. 外加电位对X80钢及其焊缝在库尔勒土壤模拟溶液中SCC行为的影响 [J]. 金属学报, 2010, 46: 951
31 Rhouma A B, Sidhom H, Braham C, et al. Effects of surface preparation on pitting resistance, residual stress, and stress corrosion cracking in austenitic stainless steels [J]. J. Mater. Eng. Perform., 2001, 10: 507
32 Zhu M, Du C W, Li X G, et al. Effect of AC on stress corrosion cracking behavior and mechanism of X80 pipeline steel in carbonate/bicarbonate solution [J]. Corros. Sci., 2014, 87: 224
33 Wang H T, Han E-H. Simulation of metastable corrosion pit development under mechanical stress [J]. Electrochim. Acta, 2013, 90: 128
34 Yang Z X. Study of corrosion and stress corrosion cracking of X70 pipeline steel in simulated deep-sea environment [D]. Beijing: University of Beijing Science and Technology China, 2017
34 杨子旋. X70钢在模拟深海环境中腐蚀及应力腐蚀行为研究[D]. 北京: 北京科技大学, 2017
35 Moayed M H, Newman R C. The relationship between pit chemistry and pit geometry near the critical pitting temperature [J]. J. Electrochem. Soc., 2006, 153: B330
36 Yang Z X, Kan B, Li J X, et al. A statistical study on the effect of hydrostatic pressure on metastable pitting corrosion of X70 pipeline steel [J]. Materials, 2017, 10: 1307
37 Xiong X L, Tao X, Zhou Q J, et al. Hydrostatic pressure effects on hydrogen permeation in A514 steel during galvanostatic hydrogen charging [J]. Corros. Sci., 2016, 112: 86
[1] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 刘洋, 吴进怡, 闫小宇, 柴柯. 海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[4] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[8] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[9] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[10] 王玉昆, 刘静, 胡骞, 黄峰. S2-对A710钢在NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[11] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[12] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[13] 董赋,胡裕龙,赵欣,王智峤. 静水压力对10CrNi3MoV钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 183-188.
[14] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[15] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.