Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 29-35    DOI: 10.11902/1005.4537.2020.046
  研究报告 本期目录 | 过刊浏览 |
热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响
任岩1,2, 钱余海1(), 张鑫涛1,2, 徐敬军1, 左君1, 李美栓1
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating
REN Yan1,2, QIAN Yuhai1(), ZHANG Xintao1,2, XU Jingjun1, ZUO Jun1, LI Meishuan1
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
全文: PDF(18347 KB)   HTML
摘要: 

采用涂刷法和包埋法在渗硅石墨基体表面制备了双层结构的ZrB2-SiC-La2O3/SiC防护涂层,与表面无包覆涂层的渗硅石墨作对比,采用三点弯曲实验方法研究了热震对其力学性能的影响。结果表明,1500 ℃到室温之间循环热震10次后,表面无包覆涂层的样品单位面积氧化失重为52.1 mg/cm2,弯曲强度保持率仅为52.0%;而包覆涂层样品单位面积氧化增重为5.6 mg/cm2,弯曲强度保持率达78.5%,包覆ZrB2-SiC-La2O3/SiC涂层的样品热震后能保持良好的力学性能。在热震过程中ZrB2-SiC-La2O3/SiC涂层氧化生成的氧化层可有效地保护石墨基体不被氧化,避免了样品内部各种缺陷的产生,从而提高了其弯曲强度。

关键词 石墨超高温陶瓷涂层热震弯曲强度    
Abstract

A ZrB2-SiC-La2O3/SiC dual-layer coating was prepared on siliconized graphite by the combination of slurry method and pack cementation. The mechanical properties of the coated siliconized graphite before and after thermal shock were investigated and compared with the bare siliconized graphite. The mass loss was observed and its value of per unit area of the bare siliconized graphite was 52.1 mg/cm2, and the flexural strength retention was only 52.0% after thermal shock test from 1500 ℃ to room temperature for 10 cycles, while they were 5.6 mg/cm2 and 78.5% for the coated ones, respectively. The high strength retention of the coated siliconized graphite after thermal shock could be attributed to the formation of a protective oxide scale on its surface, which protected the graphite substrate from oxidation and avoided the formation of defects in the interior regions of the coated siliconized graphite.

Key wordsgraphite    ultrahigh temperature ceramic coating    thermal shock    flexural strength
收稿日期: 2020-03-13     
ZTFLH:  TB321  
基金资助:国家自然科学基金(51571203)
通讯作者: 钱余海     E-mail: yhqian@imr.ac.cn
Corresponding author: QIAN Yuhai     E-mail: yhqian@imr.ac.cn
作者简介: 任岩,男,1993年生,博士生

引用本文:

任岩, 钱余海, 张鑫涛, 徐敬军, 左君, 李美栓. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
Yan REN, Yuhai QIAN, Xintao ZHANG, Jingjun XU, Jun ZUO, Meishuan LI. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 29-35.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.046      或      https://www.jcscp.org/CN/Y2021/V41/I1/29

图1  渗硅石墨、ZrB2-SiC-La2O3/SiC涂层内层粉料和外层表面的XRD谱
图2  SG和CSG两种样品的表面和截面形貌照片
图3  SG和CSG两种样品热震过程中的质量变化曲线
图4  SG和CSG样品热震后的表面XRD谱
图5  SG和CSG样品热震后的表面形貌照片
图6  SG和CSG两种样品热震前后的弯曲强度和典型的应力-位移曲线
图7  SG样品热震前后的断口形貌及对应的元素分布
图8  CSG样品热震前后的断口形貌及对应的元素分布
1 Buckley J D, Edie D D. Carbon-Carbon Materials and Composites [M]. New York: William Andrew, 1993
2 Crocker P, McEnaney B. Oxidation and fracture of a woven 2D carbon-carbon composite [J]. Carbon, 1991, 29: 881
3 Jin X C, Fan X L, Lu C S, et al. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites [J]. J. Eur. Ceram. Soc., 2018, 38: 1
4 Corral E L. Ultra-high temperature ceramic coatings [J]. Adv. Mater. Proce., 2008, 166: 30
5 Fahrenholtz W G, Hilmas G E. Ultra-high temperature ceramics: Materials for extreme environments [J]. Scr. Mater., 2017, 129: 94
6 Opeka M M, Talmy I G, Zaykoski J A. Oxidation-based materials selection for 2000 ℃+hypersonic aerosurfaces: Theoretical considerations and historical experience [J]. J. Mater. Sci., 2004, 39: 5887
7 Han W B, Hu P, Zhang X H, et al. High-temperature oxidation at 1900 ℃ of ZrB2-x SiC ultrahigh-temperature ceramic composites [J]. J. Am. Ceram. Soc., 2008, 91: 3328
8 Talmy I G, Zaykoski J A, Opeka M M. High-temperature chemistry and oxidation of ZrB2 ceramics containing SiC, Si3N4, Ta5Si3, and TaSi2 [J]. J. Am. Ceram. Soc., 2008, 91: 2250
9 Monteverde F, Bellosi A. Oxidation of ZrB2-based ceramics in dry air [J]. J. Electrochem. Soc., 2003, 150: B552
10 Monteverde F, Bellosi A. The resistance to oxidation of an HfB2-SiC composite [J]. J. Eur. Ceram. Soc., 2005, 25: 1025
11 Silvestroni L, Stricker K, Sciti D, et al. Understanding the oxidation behavior of a ZrB2-MoSi2 composite at ultra-high temperatures [J]. Acta Mater., 2008, 151: 216
12 Dehdashti M K, Fahrenholtz W G, Hilmas G E. Effects of transition metals on the oxidation behavior of ZrB2 ceramics [J]. Corros. Sci., 2005, 91: 224
13 Zapata-Solvas E, Jayaseelan D D, Brown P M, et al. Effect of La2O3 addition on long-term oxidation kinetics of ZrB2-SiC and HfB2-SiC ultra-high temperature ceramics [J]. J. Eur. Ceram. Soc., 2014, 34: 3535
14 Han W N. Preparation and oxidation resistance of SiC/γ-Y2Si2O7 double-layer coating on C/C composites [D]. Shenyang: Northeastern University, 2009
14 韩为宁. 碳/碳复合材料SiC/γ-Y2Si2O7抗氧化复合涂层的研究 [D]. 沈阳: 东北大学, 2009
15 Eakins E, Jayaseelan D D, Lee W E. Toward oxidation-resistant ZrB2-SiC ultra high temperature ceramics [J]. Metall. Mater. Trans., 2011, 42A: 878
16 Fu Q G, Jing J Y, Tan B Y, et al. Nanowire-toughened transition layer to improve the oxidation resistance of SiC-MoSi2-ZrB2 coating for C/C composites [J]. Corros. Sci., 2016, 111: 259
17 Wang C C, Li K Z, He Q C, et al. Oxidation and ablation protection of plasma sprayed LaB6-MoSi2-ZrB2 coating for carbon/carbon composites [J]. Corros. Sci., 2019, 151: 57
18 Shaw L L. Thermal residual stresses in plates and coatings composed of multi-layered and functionally graded materials [J]. Composites, 1998, 29B: 199
[1] 孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[2] 栾浩, 孟凡帝, 刘莉, 崔宇, 刘叡, 郑宏鹏, 王福会. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[3] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[4] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[5] 李烽杰,陈明辉,张哲铭,王硕,王福会. 金属搪瓷高温防护涂层的制备及其抗热震行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 411-416.
[6] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[7] 万起展,陈宁宁,杨培培,钟莲,王燕华,王佳. 聚苯胺/改性石墨复合材料的电化学制备及其防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 428-434.
[8] 李靖,马志瀛,黄绍平,李建明,许利战. 400 Hz低压阻性小电流电弧对银石墨触头材料的侵蚀研究[J]. 中国腐蚀与防护学报, 2010, 30(3): 231-235.
[9] 赵娟; 王贵; 刘朗 . SiC/Si-MoSi2/ MoSi2涂层的抗氧化性能[J]. 中国腐蚀与防护学报, 2008, 28(3): 161-165 .
[10] 夏兰廷; 韦华; 朱宏喜 . 常用铸铁材料海水腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2003, 23(2): 99-102 .
[11] 邓畅光; 邝子奇 . 稀土硅铁对TBCs梯度热障涂层组织与性能影响的研究[J]. 中国腐蚀与防护学报, 2002, 22(3): 176-179 .