Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (6): 553-559    DOI: 10.11902/1005.4537.2019.250
  研究报告 本期目录 | 过刊浏览 |
4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究
于浩冉, 张文丽, 崔中雨()
中国海洋大学 材料科学与工程学院 青岛 266100
Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution
YU Haoran, ZHANG Wenli, CUI Zhongyu()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(9785 KB)   HTML
摘要: 

研究了化学组分和显微组织结构对AZ31,AZ91,AM60和ZK61等4种镁合金在含有不同浓度NH4NO3的0.1 mol/L NaCl溶液中腐蚀行为的影响。通过浸泡实验、电化学测试、SEM和CLSM表面分析等探讨了4种镁合金的腐蚀机理。结果表明,NH4NO3的存在会加快镁合金的腐蚀;并且由于在特定浓度范围内,Cl-,NH4+和NO3-的协同作用,会发生自催化点蚀。不同镁合金的耐蚀性与合金的化学成分和显微组织密切相关。

关键词 镁合金硝酸铵自催化点蚀化学组分显微结构    
Abstract

The effect of chemical composition and microstructure on the corrosion behavior of Mg-alloys AZ31, AZ91, AM60 and ZK61 in 0.1 mol/L sodium chloride solution (NaCl) containing different concentration of ammonium nitrate (NH4NO3) were investigated. The corrosion processes of the four Mg-alloys were studied by immersion tests, polarization curve measurement, SEM and CLSM. Results show that the addition of NH4NO3 accelerates the corrosion of the four alloys, whilst autocatalytic pitting corrosion occurs due to the synergistic effects of Cl-, NH4+, and NO3- in solutions within a specific concentration range. The corrosion resistance of different Mg-alloys is closely related to the chemical composition and microstructure of the alloys.

Key wordsMg-alloy    ammonium    autocatalytic pitting corrosion    chemical composition    microstructure
收稿日期: 2019-12-06     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51601182)
通讯作者: 崔中雨     E-mail: cuizhongyu@ouc.edu.cn
Corresponding author: CUI Zhongyu     E-mail: cuizhongyu@ouc.edu.cn
作者简介: 于浩冉,女,1994年生,硕士生

引用本文:

于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
Haoran YU, Wenli ZHANG, Zhongyu CUI. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 553-559.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.250      或      https://www.jcscp.org/CN/Y2020/V40/I6/553

图1  AZ31,AZ91,AM60和ZK61合金的微观结构
图2  AZ31,AZ91,AM60和ZK61 4种镁合金在0.1 mol/L NaCl和0.1 mol/L NaCl+0.01 mol/L NH4NO3两种溶液中浸泡12 h的失重和腐蚀速率
Alloy0.1 mol/L NaCl0.1 mol/L NaCl+0.01 mol/L NH4NO3Rate of corrosion acceleration
AZ316.7438.435.71
AZ911.5010.416.93
AM604.497.991.78
ZK6118.81314.7716.74
表1  NH4NO3对4种镁合金的腐蚀加速倍率
图3  AZ31,AZ91,AM60和ZK61镁合金在0.1 mol/L NaCl和0.1 mol/L NaCl+0.01 mol/L NH4NO3溶液中的极化曲线
Alloybc / mV·dec-1Icorr / A·cm-2Pi / mm·a-1
AZ91-0.1166.99×10-60.16
AM60-0.1107.50×10-60.17
AZ31-0.1181.35×10-50.31
ZK61-0.2118.23×10-51.88
表2  4种镁合金在0.1 mol/L NaCl溶液中的自腐蚀电流密度 (Icorr) 和腐蚀速率 (Pi)
图4  AZ31,AZ91和ZK61合金在NaCl溶液中浸泡12 h后的腐蚀形貌
图5  4种镁合金在0.1 mol/L NaCl和0.1 mol/L NaCl+0.01 mol/L NH4NO3两种溶液环境中的点蚀参数
[1] Wang X J, Xu D K, Wu R Z, et al. What is going on in magnesium alloys? [J]. J. Mater. Sci. Technol., 2018, 34: 245
doi: 10.1016/j.jmst.2017.07.019
[2] Song G L, Bowles A L, StJohn D H. Corrosion resistance of aged die cast magnesium alloy AZ91D [J]. Mater. Sci. Eng., 2004, A366: 74
[3] Li J X, Zhang Y, Li J Y, et al. Effect of trace HA on microstructure, mechanical properties and corrosion behavior of Mg-2Zn-0.5Sr alloy [J]. J. Mater. Sci. Technol., 2018, 34: 299
[4] Atrens A, Johnston S, Shi Z M, et al. Understanding Mg corrosion in the body for biodegradable medical implants [J]. Scr. Mater., 2018, 154: 92
doi: 10.1016/j.scriptamat.2018.05.021
[5] Wu Z N, Li P J, Liu S X, et al. Present state of research on corrosion of magnesium alloys [J]. Foundry, 2001, 50: 583
[5] (吴振宁, 李培杰, 刘树勋等. 镁合金腐蚀问题研究现状 [J]. 铸造, 2001, 50: 583)
[6] Cui Z Y, Ge F, Lin Y, et al. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate [J]. Electrochim. Acta, 2018, 278: 421
doi: 10.1016/j.electacta.2018.05.059
[7] Cheng Y L, Qin T W, Wang H M, et al. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 517
doi: 10.1016/S1003-6326(08)60305-2
[8] Zhao J M, Li T, Zhao X H. Corrosion behavior of four cast magnesium alloys in simulated body fluid [J]. Corros. Sci. Prot. Technol., 2015, 27: 444
[8] (赵景茂, 李彤, 赵旭辉. 4种铸造镁合金在SBF溶液中的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2015, 27: 444)
doi: 10.11903/1002.6495.2014.348
[9] Li L J, Yu S H, Lei J L, et al. Corrosion electrochemical behavior of AZ31 and AZ61 magnesium alloys in simulated sea water [J]. Electrochemistry, 2008, 14: 95
[9] (李凌杰, 于生海, 雷惊雷等. AZ31和AZ61镁合金在模拟海水中的腐蚀电化学行为 [J]. 电化学, 2008, 14: 95)
[10] Song G L, Atrens A. Corrosion mechanisms of magnesium alloys [J]. Adv. Eng. Mater., 1999, 1: 11
doi: 10.1002/(ISSN)1527-2648
[11] Xia L T, Gao S, Luo X P, et al. Corrosion factor analysis of magnesium alloy at different circumstance [J]. Foundry, 2005, 54: 794
[11] (夏兰廷, 高珊, 罗小萍等. 影响镁合金腐蚀性能的因素分析 [J]. 铸造, 2005, 54: 794)
[12] Cui Z Y, Li X G, Xiao K, et al. Corrosion behavior of field-exposed zinc in a tropical marine atmosphere [J]. Corrosion, 2014, 70: 731
doi: 10.5006/1177
[13] Li T, Zhang H, He Y, et al. Comparison of corrosion behavior of Mg‐1.5Zn‐0.6Zr and AZ91D alloys in a NaCl solution [J]. Mater. Corros., 2015, 66: 7
[14] Song G L, StJohn D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ [J]. J. Light Met., 2002, 2: 1
doi: 10.1016/S1471-5317(02)00008-1
[15] Aouina N, Balbaud-Célérier F, Huet F, et al. Single pit initiation on 316L austenitic stainless steel using scanning electrochemical microscopy [J]. Electrochim. Acta, 2011, 56: 8589
doi: 10.1016/j.electacta.2011.07.044
[16] Pardo A, Merino M C, Coy A E, et al. Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media [J]. Electrochim. Acta, 2008, 53: 7890
doi: 10.1016/j.electacta.2008.06.001
[17] Yu G, Liu Y L, Li Y, et al. Corrosion and protection of magnesium alloys [J]. Chin. J. Nonferrous Met., 2002, 12: 1087
[17] (余刚, 刘跃龙, 李瑛等. Mg合金的腐蚀与防护 [J]. 中国有色金属学报, 2002, 12: 1087)
[18] Huan Z G, Leeflang M A, Zhou J, et al. In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys [J]. J. Mater. Sci: Mater. Med., 2010, 21: 2623
doi: 10.1007/s10856-010-4111-8
[19] Liu M, Uggowitzer P J, Nagasekhar A V, et al. Calculated phase diagrams and the corrosion of die-cast Mg-Al alloys [J]. Corros. Sci., 2009, 51: 602
doi: 10.1016/j.corsci.2008.12.015
[20] Zeng G, Xian J W, Gourlay C M. Nucleation and growth crystallography of Al8Mn5 on B2-Al(Mn,Fe) in AZ91 magnesium alloys [J]. Acta Mater., 2018, 153: 364
doi: 10.1016/j.actamat.2018.04.032
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[4] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[5] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[6] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[7] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[8] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[9] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[11] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[12] 陈琳, 钟福荣, 昝金龙. 复合电解液中AZ31B镁合金的放电特性及电压滞后[J]. 中国腐蚀与防护学报, 2018, 38(2): 197-202.
[13] 崔学军, 平静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.
[14] 王海媛, 卫英慧, 杜华云, 刘宝胜, 郭春丽, 侯利锋. 绿色缓蚀剂SDDTC对AZ31B镁合金的缓蚀作用及吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[15] 张新芳,欧孝通,刘雷,雷惊雷,李凌杰. 镁合金表面无机-有机杂化硅膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.