Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (5): 455-462    DOI: 10.11902/1005.4537.2017.175
  研究报告 本期目录 | 过刊浏览 |
304L不锈钢在稀硝酸环境下的腐蚀研究
赵小燕, 刘希武, 崔新安(), 于凤昌
中石化炼化工程 (集团) 股份有限公司洛阳技术研发中心 洛阳 471003
Corrosion Behavior of 304L Steel in Nitric Acid Environment
Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI(), Fengchang YU
Luoyang R&D Center of Technology Sinopec Engineering (Group) CO., LTD., Luoyang 471003, China
全文: PDF(5121 KB)   HTML
摘要: 

采用腐蚀挂片实验对304L奥氏体不锈钢在80~135 ℃下2%~20% (质量分数) 硝酸溶液环境中的腐蚀行为进行评价,并结合扫描电镜和金相显微镜分别对金属试样表面的微观腐蚀形貌和晶间腐蚀深度进行分析。结果表明,304L不锈钢的腐蚀速率随着温度的升高或硝酸浓度的增大先是缓慢增大而后急剧增大,腐蚀类型逐渐由均匀腐蚀转变为晶间腐蚀;304L不锈钢在硝酸蒸汽中的腐蚀受温度和硝酸浓度的影响程度高于其在硝酸水溶液中的腐蚀,在硝酸蒸汽中更易发生晶间腐蚀,且蒸汽中的晶间腐蚀程度明显较水溶液中的严重;随着腐蚀的加剧,304L不锈钢表面出现了晶粒破碎和脱落,导致材料发生不同程度的腐蚀减薄,这表明表面晶粒强度明显变差,且与内部相邻晶粒间的结合力显著减弱。

关键词 奥氏体不锈钢硝酸过钝化态晶间腐蚀    
Abstract

Corrosion behavior of 304L stainless steel was investigated in the liquid and steam of 2%~20% (mass fraction) nitric acids at 80~135 ℃ by coupon immersion test. The surface morphology of specimens after corrosion test and the depth of intergranular corrosion were examined by SEM and metallographic microscope, respectively. Results showed that the corrosion rate of 304L stainless steel first increased slowly and then increased sharply with the increase of temperature or nitric acid concentration. Correspondingly, the corrosion form of the steel converted from uniform corrosion to intergranular corrosion. The influence of temperature and nitric acid concentration on the corrosion of 304L stainless steel in nitric acid steam was higher than that in nitric acid solution, while the steel is more likely suffered form intergranular corrosion in nitric acid steam. The degree of intergranular corrosion in nitric acid steam was more serious than that in nitric acid solution. With the increase of corrosion, breaking and falling off of grains on the surface of 304L stainless steel occurred, resulting in thinning in thickness of the material.

Key wordsaustenitic stainless steel    nitric acid    transpassive state    intergranular corrosion
收稿日期: 2017-10-25     
ZTFLH:  TG172.6+3  
基金资助:中石化科研项目 (315108)
作者简介:

作者简介 赵小燕,女,1981年生,硕士生,高级工程师

引用本文:

赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 455-462.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.175      或      https://www.jcscp.org/CN/Y2018/V38/I5/455

图1  304L不锈钢在不同温度的8%和20%硝酸环境下的腐蚀速率
图2  304L不锈钢在不同温度下8%硝酸水溶液和蒸汽中腐蚀后的SEM像
图3  304L不锈钢在不同温度下20%硝酸水溶液和蒸汽中腐蚀后的SEM像
图4  304L不锈钢在135 ℃下20%硝酸水溶液和蒸汽中腐蚀后的截面形貌
图5  304L不锈钢在135 ℃下不同浓度硝酸环境中的腐蚀速率
图6  304L不锈钢在135 ℃下不同浓度硝酸水溶液和蒸汽中腐蚀后的SEM像
[1] Yau T L.Metallic materials for nitric acid service [A]. Corrosion 2002[C]. Denver, Colorado, 2002
[2] Laghoutaris P, Gruet N, Gwinner B, et al.Intergranular corrosion of stainless steel in nitric media [A]. Corrosion 2015[C]. Dallas, Texas, 2015
[3] Gullberg D.Corrosion assessment of stainless steels in nitric acid [A]. Corrosion 2015[C]. Dallas, Texas, 2015
[4] Mickalonis J I.Testing of 304L stainless steel in nitric acid environments with fluorides and chlorides [A]. Corrosion 2011[C]. Houston, Texas, 2011
[5] Khan S, Kain V.Measurement and Prediction of corrosion damage in stainless steels in nitric acid containing oxidizing ions [A]. Corrosion 2012[C]. Salt Lake City, Utah, 2012
[6] Zhang S L, Li M J, Wang X B, et al.Intergranular corrosion of 18-8 austenitic stainless steel[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 124(张述林, 李敏娇, 王晓波等. 18-8奥氏体不锈钢的晶间腐蚀[J]. 中国腐蚀与防护学报, 2007, 27: 124)
[7] Xu Y H, Kong L Z, Lu W, et al.Electrochemical corrosion behavior of AISI type 304 stainless steel in nitric acid media[J]. Corros. Prot., 2015, 36: 905(徐一慧, 孔令真, 路伟等. 304不锈钢在硝酸环境中的腐蚀电化学行为[J]. 腐蚀与防护, 2015, 36: 905)
[8] Wang W, Luo M, Zhang Q F.Corrosion resistance of superpurity austenitic stainless steel in boiling nitric acid containing Cr6+[J]. J. Iron Steel Res., 2009, 21(1): 47(王玮, 罗明, 张启富. 沸腾稀硝酸中Cr6+对高纯不锈钢耐蚀性的影响[J]. 钢铁研究学报, 2009, 21(1): 47)
[9] Kolman D G, Ford D K, Butt D P, et al.Corrosion of 304 stainless steel exposed to nitric acid-chloride environments [A]. Corrosion97[C]. New Orleans, Louisiana, 1997
[10] Ohta J, Mayuzumi M, Kusanagi H, et al.Corrosion of high purity Fe-Cr-Ni alloys in 13N boiling nitric acid [A]. Corrosion 98[C]. San Diego, California, 1998
[11] Takeuchi M,Whillock G O H.Effect of NOxgases on corrosion of stainless stell in hot nitric acid solutions[J]. Br. Corros. J., 2002, 37: 199
[12] Kato C, Yano M, Kiuchi K, et al.Effects of heat-transfer on corrosion of zirconium in a boiling nitric acid solution[J]. Corros. Eng.,2003, 52: 53
[13] Balbaud F, Sanchez G, Santarini G, et al.Cathodic reactions involved in corrosion processes occurring in concentrated nitric acid at 100 ℃[J]. Eur. J. Inorg. Chem., 2000, 2000: 665
[14] Balbaud F, Sanchez G, Santarini G, et al.Equilibria between gas and liquid phases for concentrated aqueous solutions of nitric acid[J]. Eur. J. Inorg. Chem., 1999, 1999: 277
[15] Balbaud F, Sanchez G, Fauvet P, et al.Mechanism of corrosion of AISI 304L stainless steel in the presence of nitric acid condensates[J]. Corros. Sci., 2000, 42: 1685
[16] Wilding M W, Paige B E.Survey on Corrosion of Metals and Alloys in Solutions Containing Nitric Acid [R]. Idaho Falls: National Technical Information Service, 1976
[17] Schosger J P, Dabosi F, Demay R, et al.Influence of corrosion products on the passivation of AISI 304L stainless steel in nitric acid media [A]. Proceedings of Eurocorr 96 Conference[C]. Nice, France, 1996
[18] Gang Y M.Development and selection of nitric acid resistance steel[J]. Chem. Eng. Des., 2004, 14(3): 6(冈毅民. 硝酸用钢的发展及其选择[J]. 化工设计, 2004, 14(3): 6)
[19] People's Republic of China General Administration of Quality Supervision,Inspection and Quarantine. GB/T 10123-2001 Corrosion of metals and alloys--Basic terms and definitions [S]. Beijing: China Standard Press, 2004(中华人民共和国国家质量监督检验检疫总局. GB/T 10123-2001 金属和合金的腐蚀基本术语和定义[S].北京: 中国标准出版社, 2004)
[20] People's Republic of China General Administration of Quality Supervision,Inspection and Quarantine,China National Standardization Management Committee. GB/T 21433-2008 Detecting susceptibility to intergranular corrosion in stainless steel pressure vessels [S]. Beijing: China Standard Press, 2008(中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 21433-2008 不锈钢压力容器晶间腐蚀敏感性检验[S].北京: 中国标准出版社, 2008)
[1] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[2] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[3] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[4] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[5] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[6] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[7] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[8] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[9] 朱明,周嘏玥,张慧慧. 316不锈钢在添加微量稀土元素硝酸熔盐中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 16-22.
[10] 彭新元,周贤良,华小珍. 晶粒尺寸对316LN不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[11] 许龙, 姚希, 李劲风, 蔡超. 2099铝锂合金晶间腐蚀行为与时效制度的相关性[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.
[12] 段振刚, 张乐福, 王力, 徐雪莲, 石秀强. 注锌对316L奥氏体不锈钢氧化膜成分的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 249-252.
[13] 俞树荣,何燕妮,李淑欣,王璐. 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 70-74.
[14] 尹开锯,邱绍宇,唐睿,洪晓峰,张乐福,张强. 超级奥氏体不锈钢AL-6XN在超临界水中的腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(5): 375-380.
[15] 冯万里,张乐福,马明娟. 轧制变形对690合金特殊晶界比例及耐晶间腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.