Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (3): 249-252    DOI: 10.11902/1005.4537.2013.107
  本期目录 | 过刊浏览 |
注锌对316L奥氏体不锈钢氧化膜成分的影响
段振刚1, 张乐福1(), 王力1, 徐雪莲2, 石秀强2
1. 上海交通大学核能科学与工程学院 上海 200240
2. 上海核工程研究设计院 上海市核电工程重点实验室 上海 200233
Effect of Zn Addition on Composition of Oxide Scales Formed on 316L Stainless Steel in High-temperature and High-pressured Water
DUAN Zhengang1, ZHANG Lefu1(), WANG Li1, XU Xuelian2, SHI Xiuqiang2
1. School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
2. Shanghai Municipal Key Laboratory of Nuclear Power Engineering, Shanghai Nuclear Engineering Research &Design Institute, Shanghai 200233, China
全文: PDF(1128 KB)   HTML
摘要: 

通过模拟压水堆一回路水环境,对316L奥氏体不锈钢在320 ℃含锌10 μg/kg的高温溶液中进行了1000 h的腐蚀实验,对腐蚀后的试样表面进行了XPS分析。结果表明,试样在含锌溶液中形成了化学成分为 (Zn,Fe,Ni)(Cr,Fe)2O4的致密氧化膜,随着腐蚀时间的增加,氧化膜中的富Cr区由内层扩展至整个氧化膜。

关键词 注锌316L奥氏体不锈钢压水堆氧化膜    
Abstract

The effect of Zn addition on the composition of oxide scales formed on 316L stainless steel has been studied in high-temperature and high pressured waters, which aim to simulate the primary loop water environment of pressurized water reactor (PWR). Then, the formed oxide scales on the steel are analyzed by X-ray photoelectron spectroscopy (XPS). The results show that after soaked in water with 10 μg/kg Zn addition at 320 ℃ for 1000 h, compact oxide scales formed on the steel, which consist mainly of (Zn, Fe, Ni)(Cr, Fe)2O4, with an inner portion rich in Cr. However, the Cr rich portion extends gradually outwards to lead the whole oxide scale to become the same with the increasing exposed time.

Key wordszinc addition    316L stainless steel    PWR    oxide film
收稿日期: 2013-06-05     
ZTFLH:  TL341  
基金资助:大型先进压水堆核电站重大专项项目(2011ZX06004010)资助
作者简介: null

段振刚,男,1988年生,硕士生,研究方向为轻水堆一回路结构材料腐蚀性能及其机理

引用本文:

段振刚, 张乐福, 王力, 徐雪莲, 石秀强. 注锌对316L奥氏体不锈钢氧化膜成分的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 249-252.
Zhengang DUAN, Lefu ZHANG, Li WANG, Xuelian XU, Xiuqiang SHI. Effect of Zn Addition on Composition of Oxide Scales Formed on 316L Stainless Steel in High-temperature and High-pressured Water. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 249-252.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.107      或      https://www.jcscp.org/CN/Y2014/V34/I3/249

图1  
图2  
图3  
图4  
图5  
[1] Lister D H, Davidson R D, McAlpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water[J]. Corros. Sci., 1987, 27(2): 113-140
[2] Robertson J. The mechanism of high temperature aqueous corrosion of steel[J]. Corros. Sci., 1989, 29(11): 1275-1291
[3] Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water—effect of chromium content in alloys and dissolved hydrogen[J]. J. Nucl. Sci. Technol., 2008, 45(10): 975-984
[4] Lister D H. Mechanisms of zinc interaction with oxide films in high-temperature water. Presentation at EPRI Meeting. Toronto, 2004
[5] Lister D H. Activity transport and corrosion processes in PWRs[J].Nucl. Energy, 1993, 32(1): 103-114
[6] Stefanov P, Stoychev D, Stoycheva M, et al. XPS and SEM studies of chromium oxide films chemically formed on stainless steel 316 L[J]. Mater. Chem. Phys., 2000, 65(2): 212-215
[7] Huang J, Liu X, Han E-H, et al. Influence of Zn on oxide films on Alloy 690 in borated andlithiated high temperature water[J]. Corros. Sci., 2011, 53(10): 3254-3261
[8] Chen P C, Lee M K. Zinc oxide nanostructures prepared by liquid phase deposition [D]. Kaohsiung: National Sun Yat-Sen University, 2006
[1] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[2] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[3] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[4] 杜开发,王彬,甘复兴,汪的华. 铜锡合金阳极在熔融碳酸盐中氧化膜的形成及其防护性能[J]. 中国腐蚀与防护学报, 2017, 37(5): 421-427.
[5] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[6] 周和荣,胡碧华,姚望,洪新培,宋述鹏. 铝合金阳极氧化层在江津污染大气环境中暴露腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 273-278.
[7] 王胜刚, 孙淼, 龙康. 紫外光电子能谱和X射线光电子能谱表征在金属材料腐蚀中的应用[J]. 中国腐蚀与防护学报, 2016, 36(4): 287-294.
[8] 汪家梅,陆辉,段振刚,张乐福,孟凡江,徐雪莲. 模拟压水堆二回路水环境中温度对690合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[9] 海正银, 王辉, 辛长胜, 蔡敏, 秦博, 陈童. 加锌对690合金在高温水中形成的氧化膜的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 532-536.
[10] 沈朝, 张乐福, 朱发文, 鲍一晨. 超临界水冷堆燃料包壳候选材料的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(4): 301-306.
[11] 海正银, 王辉, 曹林园, 胡勇. 模拟压水堆一回路条件添加Pt技术研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 253-256.
[12] 段振刚, 张乐福, 姜苏青, 石秀强, 徐雪莲. PWR水环境中Zn对Co在氧化膜中沉积行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 192-194.
[13] 檀玉, 梁可心, 张胜寒. 光电化学法研究316L不锈钢在高温水中生成氧化膜的半导体性质[J]. 中国腐蚀与防护学报, 2013, 33(6): 491-495.
[14] 杨忠波 赵文金 苗 志. Sn含量对N36锆合金在LiOH水溶液中耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 117-122.
[15] 张勤杰,姚文红,贺本林,葛洪仑,孙苗,刘威,曲俊,王玮. 阳极氧化法制备TiO2膜在模拟深海热液区的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2013, 33(1): 23-28.