Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (6): 590-596    DOI: 10.11902/1005.4537.2016.118
  研究报告 本期目录 | 过刊浏览 |
表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响
孙超1, 杨潇2, 文玉华2()
1 中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610213
2 四川大学制造科学与工程学院 成都 610065
Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel
Chao SUN1, Xiao YANG2, Yuhua WEN2()
1 Science and Technology on Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610213, China
2 School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China
全文: PDF(3284 KB)   HTML
摘要: 

利用直流磁控溅射在316奥氏体不锈钢表面制备高含铝奥氏体不锈钢涂层,采用增重法、SEM、EDS和XRD研究了高含铝合金涂层对316奥氏体不锈钢在850 ℃下抗高温氧化性能的影响。结果表明,施加涂层显著提高了316不锈钢的抗氧化性能。其原因是高含铝合金涂层表面形成了由Al2O3、Fe(Cr,Al)2O4和Cr2O3组成的连续致密的氧化膜,而316奥氏体不锈钢表面形成的是由Fe2O3、Cr2O3、FeCr2O4和少量NiCr2O4组成的疏松且不连续的氧化膜。

关键词 高含铝合金涂层磁控溅射奥氏体不锈钢高温氧化    
Abstract

To improve the high-temperature oxidation resistance of austenitic stainless steels, the high-Al austenitic stainless alloy coatings were deposited on the surfaces of 316 austenitic stainless steel using the direct current magnetron sputtering. Cyclic oxidation tests were performed at 850 ℃ in air. The effect of the alloy coatings on the oxidation resistance of 316 austenitic stainless steel was studied by SEM,EDS and XRD. The oxidation resistance of 316 austenitic stainless steels with coatings was much better than that without coatings. The formation of a continuous and dense film on the surfaces of alloy coatings consisting of Al2O3, Fe(Cr, Al)2O4 and NiCrO3 is responsible for its excellent oxidation resistance. The poor oxidation resistance of 316 stainless steel can be ascribed to the formation of a rough and loose film on the surfaces consisting of Fe2O3, Cr2O3, FeCr2O4 and NiCr2O4.

Key wordshigh-aluminum alloy coating    magnetron sputtering    austenitic stainless steel    high-temperature oxidation resistance
收稿日期: 2016-08-15     
ZTFLH:  TG174.444  
基金资助:国家自然科学基金 (51671138)
作者简介:

作者简介 孙超,男,1981年生,博士

引用本文:

孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 590-596.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.118      或      https://www.jcscp.org/CN/Y2017/V37/I6/590

图1  高含铝合金涂层截面和表面的SEM像
图2  有、无高含铝合金涂层的316不锈钢在850 ℃时的氧化动力学曲线
图3  有、无高含铝合金涂层的316不锈钢在850 ℃循环氧化100 h后的宏观表面形貌
图4  有、无高含铝合金涂层的316不锈钢850 ℃循环氧化100 h后表面氧化膜的XRD谱
图5  有、无高含铝合金涂层的316不锈钢在850 ℃循环氧化100 h后表面SEM像
Element Unexfoliated area Exfoliated area
O 64.53 60.56
Fe 3.95 28.79
Cr 31.53 8.92
Ni --- 1.73
表1  无涂层316不锈钢在850 ℃下循环氧化100 h后表面氧化物的化学成分
图6  表面沉积涂层和未沉积涂层的316不锈钢在850 ℃循环氧化100 h后截面SEM像
[1] Brady M P, Yamamoto Y, Lu Z P, et al.Alumina-forming austenitic: A new class of heat-resistant stainless steels[J]. Stainless Steel World Mag., 2007, 38(11): 2737
[2] Wu X D, Wu G, Zhu J J, et al.High temperature oxidation resistance of aluminum-containing austenitic heat-resisting steel[J]. Heat Treat. Met., 2016, 41(8): 1(吴晓东, 吴刚, 朱晶晶等. 含铝奥氏体耐热钢的高温抗氧化性能[J]. 金属热处理, 2016, 41(8): 1)
[3] Li M S.High Temperature Corrosion in Metals [M]. Beijing: Metallurgical Industry Press, 2011: 239(李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2011: 239)
[4] Chinese society for corrosion and protection. Zhu R Z. Heat Resistant Steels and High Temperature Alloys [M]. Beijing: Chemical Industry Press, 1995: 32(中国腐蚀与保护协会. 朱日彰. 耐热钢和高温合金 [M]. 北京: 化学工业出版社,1995: 32)
[5] Zhu R Z, He Y D, Qi H B.High Temperature Corrosion and High-temperature Anti-corrosive Materials[M]. Shanghai: Shanghai Scientific and technical publishers, 1995: 186(朱日彰, 何业东, 齐慧滨. 高温腐蚀及耐高温腐蚀材料 [M]. 上海: 上海科学技术出版社, 1995: 186)
[6] Pan Z Z, Zhao Z L, Kang Z F, et al.Influence factors on high temperature oxidation resistance and creep property of new type AFA stainless steel[J]. Met. World, 2017, (3): 32(盘志忠,赵子龙, 康志芳等. 新型AFA不锈钢抗高温氧化性及蠕变性能的影响因素[J]. 金属世界, 2017, (3): 32)
[7] Meng Q, La Q P, Sa X R, et al.Research status and development trend of high-aluminum austenitic stainless steel[J]. Mater. Rev., 2013, (17): 101(孟倩, 喇培倩, 撒兴瑞等. 高铝奥氏体不锈钢研究现状及发展趋势[J]. 材料导报, 2013, (17): 101)
[8] Xu Q X, Lv P Z.Research progress on a new class of high-temperature oxidation-resistant austenitic heat-resistant steels[J]. Mater. China, 2011, 30(12): 1(徐向棋,吕昭平. 新一代新型抗高温氧化奥氏体耐热钢的研究进展[J]. 中国材料进展, 2011, 30(12): 1)
[9] Yang D W, Huang F J, Cao L Y, et al.Research progress and development trend of high temperature protective coatings[J]. Mater. Prot., 2009, 42(1): 40(杨文东, 黄剑锋, 曹丽云等. 高温防护涂层的研究进展及发展趋势[J]. 材料保护, 2009, 42(1): 40)
[10] Lin C, Du N, Zhao Q.New approaches on high-temperature coatings[J]. Mater. Prot., 2001, 34(6): 4(林翠, 杜楠, 赵晴. 高温涂层研究的新进展[J]. 材料保护, 2001, 34(6): 4)
[11] Wang J Y, Liu A L, Li F C.Effect of hot dip aluminizing on isothermal oxidation behavior of 201 stainless steel[J]. J. Heilongjiang Univ. Sci. Technol., 2016, 26(5): 532(王建永, 刘爱莲, 李凤春. 热浸镀铝对201不锈钢恒温氧化行为的影响[J]. 黑龙江科技大学学报, 2016, 26(5): 532)
[12] Brady M P, Yamamoto Y, Santella M L, et al.The development of alumina-forming austenitic stainless steels for high-temperature structural use[J]. High-temperature Alloys, 2008, 60(7): 12
[13] Briks N, Meier G H, Pettit F S.Translated by Xin L, Wang W. Introduction to High Temperature Oxidation of Metals [M]. Beijing: Higher Education Press, 2010: 33(Briks N, Meier G H, Pettit F S著. 辛丽, 王文译. 金属高温氧化导论 [M]. 北京: 高等教育出版社, 2010: 33)
[14] Liu Z, Gao W, Li M S.Cyclic oxidation of sputter-deposited nanocrystalline Fe-Cr-Ni-Al alloy coatings[J]. Oxid. Met., 1999, 51(516): 403
[15] Taniguchi S, Andoh A.Improvement in the oxidation resistance of an Al-deposited Fe-Cr-Al foil by preoxidation[J]. Oxid. Met., 2002, 58(5/6): 545
[16] Li P, Jia J G, An L, et al.Preparation and oxidation resistance of siliconized layer deposited on 0Cr18Ni9 stainless steel[J]. Heat Treat. Met., 2011, 36(5): 54(李鹏, 贾建刚, 安亮等. 0Cr18Ni9不锈钢表面渗Si层制备及抗氧化性能研究[J]. 金属热处理, 2011, 36(5): 54)
[17] Chen J.Research of high temperature oxidation of hot-dipped Al coating stainless steel[J]. Hot Work. Technol., 1998,(6): 12, 1998,(6): 12)
[18] Xia Y P, Zhu C F, Fan D M, et al.High temperature oxidation process of SUS304 and SUS430 stainless steels[J]. Mater. Prot., 2013, 46(12): 27(夏云鹏, 朱承飞, 范迪民等. SUS304, SUS430不锈钢的高温氧化过程[J]. 材料保护, 2013, (12): 27)
[19] Chen H.Research on high temperature oxidation and grain growth behaviors in austenitic stainless steels [D]. Lanzhou University of Technology, 2011: 11(陈华. 奥氏体不锈钢高温氧化性能与晶粒长大行为的研究 [D]. 兰州理工大学, 2011: 11)
[20] Jia F X, Hou R M, Jia X B.Performance and Selection of Stainless Steel [M]. Beijing: Chemical Industry Press, 2013: 138(贾凤翔, 侯若明, 贾晓滨. 不锈钢性能及其选用 [M]. 北京: 化学工业出版社, 2013: 138)
[21] Cheng X N, Yao Y Q, Li D S, et al.High temperature oxidation behavior of alumina-forming austenitic stainless steel[J]. Heat Treat. Met., 2017, 42(2): 72(程晓农, 姚永泉, 李冬升等. 一种含铝奥氏体不锈钢的高温氧化行为[J].金属热处理, 2017, 42(2): 72)
[22] Chinese Society for Corrosion and Protection. Li T F. High Temperature Oxidation and Thermal Corrosion in Metals[M]. Beijing, 2003: 139(中国腐蚀与保护协会. 李铁藩著. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 139)
[23] Stott F H, Wood G C, Stringer J.The influence of alloying elements on the development and maintenance of protective scales[J]. Oxid. Met., 1995, 44(1/2): 113
[24] Wang Y G, He Y D, Zhu R Z.Influence of Y+ in plantation on high temperature oxidation of Fe3Al[J]. J. Chin. Rare Earth Soc., 1995, 44(1/2): 113(王永刚, 何业东, 朱日彰. 离子注入Y+对Fe3Al高温氧化行为的影响[J]. 中国稀土学报, 1995, 44(1/2): 113)
[1] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[2] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[3] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[4] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[5] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[6] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[7] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[8] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[9] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[10] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[11] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[12] 赵展,李景阳,董建新,姚志浩,张麦仓. 925镍铁基耐蚀合金均匀化及高温氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[13] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[14] 谢冬柏,单国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[15] 杨甜甜,徐敬军,钱余海,李美栓. 石墨基体上ZrC/MoSi2微叠层涂层的制备及抗超高温氧化性能[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.