Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (5): 447-454    DOI: 10.11902/1005.4537.2017.201
  研究报告 本期目录 | 过刊浏览 |
基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响
王凯1(), 易耀勇2, 卢清华1, 易江龙2, 江泽新3, 马金军3, 张宇4
1 佛山科学技术学院 机电工程学院 佛山 528231
2 广东省焊接技术研究所 (广东省中乌研究院) 广州 510650
3 广船国际有限公司 广州 511462
4 江苏省 (沙钢) 钢铁研究院 张家港 215625
Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel
Kai WANG1(), Yaoyong YI2, Qinghua LU1, Jianglong YI2, Zexin JIANG3, Jinjun MA3, Yu ZHANG4
1 School of Mechatronics Engineering, Foshan University, Foshan 528231, China
2 Guangdong Welding Institute (China-Ukraine E. O. Paton Institute of Welding), Guangzhou 510650, China
3 Guangzhou Shipyard International Co., Ltd., Guangzhou 511462, China
4 Institute of Research of Iron and Steel, Sha-steel, Zhangjiagang 215625, China
全文: PDF(5713 KB)   HTML
摘要: 

利用Gleeble3800热模拟实验机模拟了Q690高强钢焊接热影响区在不同峰值温度条件下的单道次热循环过程。测定Q690高强钢母材及不同峰值温度条件下热影响区试样的力学性能及电化学特性,观察不同峰值温度下Q690高强钢热影响区的热模拟显微组织及电化学实验腐蚀形貌。结果表明,不同热模拟峰值温度下,Q690高强钢的热影响区组织呈现出非线性变化,其力学性能和腐蚀行为取决于显微组织中的贝氏体组织的转变与晶粒大小。当峰值温度为850 ℃时,热影响区具有最佳的低温冲击韧性以及和Q690高强钢母材相近的电化学腐蚀特性。

关键词 Q690高强钢窄间隙焊接热模拟显微组织电化学腐蚀    
Abstract

According to the thermal cycle process of Q690 high strength steel by narrow-gap (NG) welding, the thermal simulated NG weldings were carried out by a Gleeble 3800 thermal simulation test machine to prepare weld joints with different HAZs of Q690 high strength steel at different peak temperature in a single thermal cycle. The parameters of thermal simulated NG welding are as follows: preheat temperature of 150 ℃, peak temperature (Tp) retention time of 1 s, t8/5 value of 14 s, with the variation of Tp as 500, 650, 850, 950 and 1350 ℃. The effect of welding parameters on the properties of Q690 high strength steel were investigated and the relationship between the micro-structural factors, mechanical properties and electrochemical behavior were discussed. The microstructure of the thermal simulated weld Q690 HSLA steel was observed by OM and SEM. The electrochemical behavior of them in a 3.5% (mass fraction) NaCl aqueous solution at room temperature was assessed by means of open circuit potential (OCP) measurement, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization measurement. The mechanical properties and electrochemical behavior of the Q690 steel HAZ at different Tp show a nonlinear variation with the increasing Tp, which were mainly depended on the microstructure characteristics such as the bainite transformation and grain size. The HAZ (Tp=850 ℃) has the best low temperature impact toughness, and with similar electrochemical behavior as the bare Q690 steel.

Key wordsQ690 high strength steel    narrow-gap welding    thermal simulation    microstructure    electrochemical corrosion
收稿日期: 2017-11-24     
ZTFLH:  TG115.6+2  
基金资助:国家自然科学基金 (51601043) 和国际科技合作计划 (2014DFR50310)
作者简介:

作者简介 王凯,男,1981年生,博士,高级工程师

引用本文:

王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 447-454.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.201      或      https://www.jcscp.org/CN/Y2018/V38/I5/447

图1  Q690高强钢显微硬度和冲击韧性随焊接热模拟处理峰值温度的变化
图2  Q690高强钢母材及其在不同焊接热模拟峰值温度处理后的显微组织OM像
图3  Q690高强钢母材及其在不同焊接热模拟峰值温度处理后的显微组织SEM像
图4  Q690高强钢母材及其在不同焊接热模拟峰值温度处理后在3.5%NaCl溶液中的开路电位-时间曲线
图5  经不同热模拟峰值温度处理的Q690高强钢试样在3.5%NaCl溶液中的EIS谱
图6  Q690钢试样的电化学阻抗谱等效电路图
Peak temperature℃ RsΩcm2 CPESsecn n RctΩcm2 Chi-squared
1350 99.46 2.355×10-4 0.81 6037 2.31×10-2
950 93.81 4.796×10-4 0.75 2.09×104 1.6×10-3
850 101 5.217×10-4 0.83 7204 7×10-4
650 122.5 6.308×10-4 0.66 7579 1.5×10-3
500 34.64 3.677×10-4 0.82 1.61×106 1.8×10-3
表1  阻抗谱等效电路元件参数值
图7  经不同热模拟峰值温度处理的Q690高强钢试样在3.5%NaCl溶液中的动电位极化曲线
Peak temperature Ecorr(vs SCE)mV IcorrμAcm-2 RpΩcm2
As-prepared -0.591 168.6 154.7
1350 ℃ -0.580 4.05 6439.1
950 ℃ -0.499 3.79 6869.3
850 ℃ -0.577 129.19 201.9
650 ℃ -0.448 4.13 6313.0
500 ℃ -0.509 3.29 7918.2
表2  动电位极化参数拟合结果
图8  3种典型热模拟峰值温度处理的Q690高强钢试样电化学实验后的腐蚀形貌
[1] Ma T Y, Hu Y F, Liu X, et al.Experimental investigation into high strength Q690 steel welded H-sections under combined compression and bending[J]. J. Cons. Steel Res., 2017, 138: 449
[2] Xu W H, Dong C L, Yang C L, et al.Microstructure and mechanical properties of high-strength steel joints by oscillating arc narrow gap GMAW[J]. Weld. Join., 2016, 7: 32(徐望辉, 董春林, 杨春利等. 高强钢摆动电弧窄间隙GMAW组织与性能研究[J]. 焊接, 2016, 7: 32)
[3] Wang A H, Peng Y, Xiao H J, et al.Impact fracture behavior of deposited metal of 690 MPa level high strength low alloy steel[J]. J. Mech. Eng., 2012, 48(2): 73(王爱华, 彭云, 肖红军等. 690MPa级低合金高强钢熔敷金属冲击断裂行为研究[J]. 机械工程学报, 2012, 48(2): 73)
[4] Chen X Z, Huang Y M.Hot deformation behavior of HSLA steel Q690 and phase transformation during compression[J]. J. Alloys Compd., 2015, 619: 564
[5] Li Y J, Jiang Q L, Bao Y P, et al.Effect of heat input on the microstructure and toughness of heat affect zone of Q690 high strength steel[J]. China Sci., 2011, 6: 98(李亚江, 蒋庆磊, 暴一品等. 焊接热输入对Q690高强钢热影响区组织和韧性的影响[J]. 中国科技论文, 2011, 6: 98)
[6] Meng Y, Luo P, Hu C, et al.Influence of peak temperature on microstructure and toughness of heat affected zone of Q690 steel[J]. Hot Work. Technol., 2013, 42(17): 43(孟尧, 罗鹏, 胡聪等. 热循环峰值温度对Q690钢热影响区组织与韧性的影响[J]. 热加工工艺, 2013, 42(17): 43)
[7] Ma H C, Liu Z Y, Du C W, et al.Effect of SO2 content on corrosion behavior of high-strength steel E690 in polluted marine atmosphere[J]. J. Mech. Eng., 2016, 52(16): 33(马宏驰, 刘智勇, 杜翠薇等. SO2质量分数对污染海洋大气环境中高强钢E690腐蚀行为的影响[J]. 机械工程学报, 2016, 52(16): 33)
[8] Xing P, Lu L, Li X G.Oxygen-concentration cell induced corrosion of E690 steel for ocean platform[J]. Chin. J. Mater. Res., 2016, 30: 241(邢佩, 卢琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究[J]. 材料研究学报, 2016, 30: 241)
[9] Ma H C, Liu Z Y, Du C W, et al.Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater[J]. Mater. Sci. Eng., 2015, A642: 22
[10] Hao W K, Liu Z Y, Wu W, et al.Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments[J]. Mater. Sci. Eng., 2018, A710: 318
[11] Wu W, Hao W K, Liu Z Y, et al.Corrosion behavior of E690 high-strength steel in alternating wet-dry marine environment with different pH values[J]. J. Mater. Eng. Perform., 2015, 24: 4636
[12] Zhang J, Cai Q W, Wu H B, et al.Mechanical properties and marine atmosphere corrosion behavior of E690 ocean platform steel[J]. J. Univ. Sci. Technol. Beijing, 2012, 34: 657(张杰, 蔡庆伍, 武会宾等. E690海洋平台用钢力学性能和海洋大气腐蚀行为[J]. 北京科技大学学报, 2012, 34: 657)
[13] Wu B, Cai Q W, Zhang J, et al.Corrosion resistance of E690 platform steel in simulation marine atmosphere[J]. Heat Treat. Met., 2011, 36(3): 26(武博, 蔡庆伍, 张杰等. E690平台用钢耐海洋大气腐蚀模拟[J]. 金属热处理, 2011, 36(3): 26)
[14] Yi Y Y, Zheng S D, Yi J L, et al.Narrow gap gas metal arc welding of S960QL steel[J]. Electr. Weld. Mach., 2012, 42(4): 76(易耀勇, 郑世达, 易江龙等. S960QL钢窄间隙熔化极气体保护焊[J]. 电焊机, 2012, 42(4): 76)
[15] Wang L W, Liu Z Y, Cui Z Y, et al.In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel[J]. Corros. Sci., 2014, 85: 401
[16] Yin J, Liu T W, Liu W Q.Ultra-fine mc-type precipitates formed during high tempering in a high-strength low-alloy bainitic steel[J]. Heat Treat., 2016, 31(4): 9(殷匠, 刘天威, 刘文庆. 一种高强度低合金贝氏体钢高温回火析出的极细MC相[J]. 热处理, 2016, 31(4): 9)
[17] Xu C C, Zhang X S, Hu G.Effect of plastic deformation on texture and corrosion resistance of AISI304 stainless steel[J]. J. Chem. Ind. Eng., 2003, 54: 790(许淳淳, 张新生, 胡钢. 塑性变形对AISI304不锈钢组织及耐蚀性的影响[J]. 化工学报, 2003, 54: 790)
[18] Ma H C, Du C W, Liu Z Y, et al.Comparison research on corrosion behavior of E36 and E690 steel in simulated seawater[J]. Corros. Sci. Prot. Technol., 2016, 28: 27(马宏驰, 杜翠薇, 刘智勇等. E36和E690钢在模拟海水中的腐蚀行为对比研究[J]. 腐蚀科学与防护技术, 2016, 28: 27)
[19] Yue Y J, Tang D, Wu H B, et al.Influence of Nb on corrosion behavior of low alloy steel in strong-acid Cl- solution environment[J]. J. Mater. Eng., 2015, 43(6): 14(岳远杰, 唐荻, 武会宾等. Nb对高含Cl-强酸性溶液环境中低合金钢腐蚀性能的影响[J]. 材料工程, 2015, 43(6): 14)
[20] Li H,Yang C F. Chai F, et al.Effect of gas composition on the corrosion behavior of low alloy steel in wet-dry cycling environment[J]. J. Iron Steel Res., 2016, 28: 50(李灏, 杨才福, 柴锋等. 干湿交替环境下气体组成对低合金钢腐蚀行为的影响[J]. 钢铁研究学报, 2016, 28: 50)
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[3] 施远,金洙吉,姜冠楠,刘作涛,周忠正,王泽北. YG15硬质合金电化学腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[4] 牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[5] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[6] 张建春,左龙飞,蒋金洋,麻晗,宋丹. 耐海水腐蚀钢筋00Cr10MoV的组织结构及性能研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[7] 宋博强,陈旭,马贵阳,刘睿. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[8] 苏艳,张伦武,钟勇. 5A90铝锂合金显微组织及海洋大气环境腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 260-266.
[9] 汪家梅,陆辉,段振刚,张乐福,孟凡江,徐雪莲. 模拟压水堆二回路水环境中温度对690合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[10] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[11] 张宁,孙虎元,孙立娟,刘栓. X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.
[12] 暨波,张新明,张卓夫,叶凌英,李文健. Yb对2519A铝合金抗剥落腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 279-286.
[13] 张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
[14] 梁平, 王莹. 覆有短期腐蚀产物膜的X80钢的电化学行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.
[15] 张雨,王均,石树坤,王院生. 时效对2205双相不锈钢在硫环境下的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(6): 496-500.