Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (5): 427-432    DOI: 10.11902/1005.4537.2015.206
  本期目录 | 过刊浏览 |
奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究
白强1,2,邹妍2(),孔祥峰2,高杨2,刘岩2,董胜1
1. 中国海洋大学工程学院 青岛 266100
2. 山东省科学院海洋仪器仪表研究所 山东省海洋环境监测技术重点实验室 青岛 266001
Electrochemical Corrosion Behavior in Seawater of Weld Joints of CCSE40 Steel Prepared by Underwater WetWelding with Austenitic Welding Rod
Qiang BAI1,2,Yan ZOU2(),Xiangfeng KONG2,Yang GAO2,Yan LIU2,Sheng DONG1
1. College of Engineering, Ocean University of China, Qingdao 266100, China
2. Shandong Provincial Key Laboratory of Ocean Environment Monitoring Technology, Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266001, China
全文: PDF(2488 KB)   HTML
摘要: 

采用电化学方法结合金相显微镜研究了奥氏体焊条水下湿法焊接的低合金高强钢CCSE40在海水中的腐蚀电化学行为。结果表明,浸泡初期热影响区 (HAZ) 的腐蚀速率最快。随着浸泡时间的增加,母材 (BM) 的腐蚀速率最快。造成这种现象的原因是腐蚀产物不同引起的。浸泡初期,锈层较薄,HAZ与BM的腐蚀产物比较疏松,对溶解氧的扩散影响不大,HAZ的腐蚀速率较快。长期浸泡,HAZ表面生成的锈层非常致密,阻碍了溶解氧的扩散,而BM表面的锈层仍然比较疏松,此时BM腐蚀速率较快。

关键词 水下湿法焊接腐蚀产物腐蚀速率微观结构极化曲线    
Abstract

The electrochemical corrosion behavior in seawater of weld joints of a high strength low-alloy steel CCSE40, which were prepared by underwater wet welding with austenitic welding rod, was studied by electrochemical methods and metallurgical microscopy. Results indicated that, in the initial immersion stage, the heat affected zone had the highest corrosion rate; and with the increasing immersion time, the corrosion rate of base metal became the highest. The reason was related to the formation of the corrosion products that in the initial stage of immersion, the corrosion product layer was thin and loose, which thus had little influence on the diffusion of dissolved oxygen, thereby the heat affected zone was easy to be corroded. After a period of immersion, the corrosion product layer on the heat affected zone was dense, which could hinder the diffusion of dissolved oxygen, in the meanwhile, the corrosion product layer on the base metal was still loose, and therefore, the base metal was easy to be corroded.

Key wordsunderwater wet welding    corrosion product    corrosion rate    microstructure    polarization curve
    
基金资助:国家自然科学基金项目 (51209129) 资助

引用本文:

白强,邹妍,孔祥峰,高杨,刘岩,董胜. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
Qiang BAI, Yan ZOU, Xiangfeng KONG, Yang GAO, Yan LIU, Sheng DONG. Electrochemical Corrosion Behavior in Seawater of Weld Joints of CCSE40 Steel Prepared by Underwater WetWelding with Austenitic Welding Rod. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 427-432.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.206      或      https://www.jcscp.org/CN/Y2016/V36/I5/427

Position C Mn Si S P Mo Ni Cr Fe
Base metal 0.18 1.2 0.50 0.035 0.035 0.08 0.40 0.20 Bal.
Weld zone 0.10 1.6 0.78 0.020 0.020 4.5 22.5 20.6 Bal.
表 1  CCSE40及焊缝金属化学成分
图1  水下湿法焊接接头在海水中浸泡28周除锈前后的表面形貌
图2  CCSE40合金钢BM, HAZ及WZ的微观结构
图3  水下湿法焊接接头不同区域自腐蚀电位随浸泡时间的变化
图4  在海水中浸泡不同时间后WZ, HAZ和BM的极化曲线
图5  HAZ和BM的极化电阻随浸泡时间的变化规律
图6  HAZ和BM的B值和腐蚀速率随浸泡时间的变化曲线
图7  水下焊接接头在海水中浸泡28周HAZ和BM腐蚀产物的XRD谱
[1] Rowe M, Liu S.Recent developments in underwater wet welding[J]. Sci. Technol. Weld. Join., 2001, 6(6): 387
[2] Lananowski J.Development of under-water welding techniques[J]. Weld Int., 2008, 25(12): 933
[3] Wernicke R, Pohl R.Underwater wet repair welding and strength testing on pipe-patch joints[J]. J. Offshore Mech. Arct. Eng., 1998, 120(4): 237
[4] Padilla E, Chawla N, Silva L F, et al.Image analysis of cracks in the weld metal of a wet welded steel joint by three dimensional (3D) X-ray microtomography[J]. Mater. Charact., 2013, 83(9): 139
[5] Sadeghian M, Shamanian M, Shafyei A.Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel[J]. Mater. Des., 2014, 60(8): 678
[6] Wei B M.Metallic Corrosion Theories and Applications [M]. Beijing: Chemical Industry Press, 1984: 305
[6] (魏宝明. 金属腐蚀理论及应用 [M]. 北京: 化学工业出版社, 1984:305)
[7] Yu J R, Zhang Y L, Jiang L P.Underwater welding technique and development[J]. Weld. Technol., 2001, 30(4): 2
[7] (俞建荣, 张奕林, 蒋力培. 水下焊接技术及其进展[J]. 焊接技术, 2001, 30(4): 2)
[8] Deen K M, Ahmad R, Khan I H, et al.Microstructural study and electrochemical behavior of low alloy steel weldment[J]. Mater. Des., 2010, 31(6): 3051
[9] Basak A K, Diomidis N, Celis J P, et al.Chemical reactivity of thermo-hardenable steel weld joints investigated by electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2008, 53(25): 7575
[10] Wu W Y, Hu S S, Shen J Q.Microstructure, mechanical properties and corrosion behavior of laser welded dissimilar joints between ferritic stainless steel and carbon steel[J]. Mater. Des., 2015, 65(1): 855
[11] Zhang G, Cheng Y.Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution[J]. Corros. Sci., 2009, 51(8): 1714
[12] Bordbar S, Alizadeh M, Hashemi S H.Effects of microstructure alteration on corrosion behavior of welded joint in API X70 pipeline steel[J]. Mater. Des., 2013, 45(1): 597
[13] Strattmann M, Muller J.The mechanism of the oxygen reduction on rust covered metal substrates[J]. Corros. Sci., 1994, 36(2): 327
[14] Zou Y, Wang J, Zheng Y Y.Electrochemical techniques for determining corrosion rate of rusted steel in seawater[J]. Corros. Sci., 2011, 53(1): 208
[15] Zou Y, Wang J, Bai Q, et al.Potential distribution characteristics of mild steel in seawater[J]. Corros. Sci., 2012, 57(2): 202
[1] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[2] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[3] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[4] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[5] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[6] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[7] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[8] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[9] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[10] 于美,魏新帝,范世洋,刘建华,李松梅,钟锦岩. 应力作用下2297铝锂合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[11] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[12] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[13] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[14] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[15] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.