Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (3): 199-204    DOI: 10.11902/1005.4537.2014.093
  综合评述 本期目录 | 过刊浏览 |
含有机物水溶液电解体系中的阳极材料及其失效特性
金小寒,胡吉明(),张鉴清
Anode Materials Used in Electrolytic System Containing Organic Compounds and Their Failure Characteristics
Xiaohan JIN,Jiming HU(),Jianqing ZHANG
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
全文: PDF(591 KB)   HTML
摘要: 

较详细地介绍了含有机物水溶液电解体系中使用的阳极材料;分析了该种特殊使用环境下阳极的失效机制,如表面粘污机理与加速溶解机制;综述了提高阳极耐用性的相关对策,包括优化电极组分和阳极再活化;最后对含有机物水溶液中阳极材料的研究进行了展望。

关键词 阳极有机物电解体系失效机制    
Abstract

In this paper, anode materials used for organic compounds containing aqueous electrolyte were introduced. Further, their failure characteristics were analyzed in terms of surface fouling and accelerated dissolution. Meanwhile, the strategies for failure prevention, including the optimization of chemical composition and anodic re-activation of electrode, were reviewed in details. Finally, the investigation of anode materials in organic compounds containing electrolyte was also prospected.

Key wordsanode    organic compound    electrolytic system    failure characteristic
    
基金资助:国家自然科学基金项目 (20473072) 资助

引用本文:

金小寒,胡吉明,张鉴清. 含有机物水溶液电解体系中的阳极材料及其失效特性[J]. 中国腐蚀与防护学报, 2015, 35(3): 199-204.
Xiaohan JIN, Jiming HU, Jianqing ZHANG. Anode Materials Used in Electrolytic System Containing Organic Compounds and Their Failure Characteristics. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 199-204.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.093      或      https://www.jcscp.org/CN/Y2015/V35/I3/199

[1] Beer H B. Method of making an electrode having a coating containing a platinum metal oxide thereon [P]. US Patent, 1996 549194,
[2] Zha Q X. The Introduction of Electrode Process Kinetics[M]. 2nd ed. Beijing: Science Press, 1987 (查全性.电极过程动力学导论[M]. 第二版. 北京: 科学出版社, 1987)
[3] Meng H M. High catalytic activity insoluble nanocrystalline metal oxide coating electrode[J]. Adv. Mater. Ind., 2002, (5): 68 (孟惠民. 高催化活性纳米晶贵金属氧化物涂层不溶性电极[J]. 新材料产业, 2002, (5): 68)
[4] Morimitsu M, Tamura H, Matsunaga M, et al. Polarization behaviour and lifetime of IrO2-Ta2O5-SnO2/Ti anodes in p-phenolsulfonic acid solutions for tin plating[J]. J. Appl. Electrochem., 2000, 30(4): 511
[5] Panizza M, Cerisola G. Influence of anode material on the electrochemical oxidation of 2-naphthol: Part 1. Cyclic voltammetry and potential step experiments[J]. Electrochim. Acta, 2003, 48(23): 3491
[6] Polcaro A, Palmas S, Renoldi F, et al. On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenolfor wastewater treatment[J]. J. Appl. Electrochem., 1999, 29(2): 147
[7] Kim K W, Lee E H, Kim J S, et al. Material and organic destruction characteristics of high temperature-sintered RuO2 and IrO2 electrodes[J]. J. Electrochem. Soc., 2002, 149(12): 187
[8] Bock C, MacDougall B. Influence of metal oxide properties on the oxidation of organics[J]. J. Electroanal. Chem., 2000, 491(1/2): 48
[9] Cestarolli D, De Andrade A. Electrochemical and morphological properties of Ti/Ru0.3Pb(0.7-x)/TixO2-coated electrodes[J]. Electrochim. Acta, 2003, 48(28): 4137
[10] Yang C H, Wen T C. Electrochemical copolymerization of aniline and para-phenylenediamine on IrO2-coated titanium electrode[J]. J. Appl. Electrochem., 1994, 24(2): 166
[11] Kim S, Kim T H, Park C, et al. Electrochemical oxidation of polyvinyl alcohol using a RuO2/Ti anode[J]. Desalination, 2003, 155(1): 49
[12] Feng Y, Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution[J]. Water Res., 2003, 37(10): 2399
[13] Takahashi M. Electrochemical study of high performance titanium base electrodes covered with platinum family elements by thermal decomposition for industrial electrolysis. IV: Performance improvement of iridium oxide electrodes as counter electrodes with oxygen evolution in organic electrolysis.[J]. Soda Chlorine, 1988, 39: 531 (高橋正雄. 工業電解用チタン基体白金族熱分解被覆電極の高性能化に関する電気化学的研究IV有機電解の対極酸素発生電極としての酸化イリジウム電極の性能向上[J]. ソーダと塩素, 1988, 39: 531)
[14] Watanabe A, Minoru U, Kameyama T. High oxygen evolution overpotential electrode material--based on the use of PbO2 electrodes (The latest progress of electrode materials <Special Issue>)[J]. Electrochemistry (The Electrochemical Society of Japan), 1988, 56(10): 819 (渡辺昭雄, 植田稔, 亀山哲也.高酸素過電圧電極材料--2 酸化鉛電極を中心に (電極材料の新たな展開<特集>)[J]. 電気化学および工業物理化学, 1988, 56(10): 819)
[15] Hu J M, Meng H M, Sun D B, et al. Effect of SnO2 addition on the service life and electrochemical properties of Ti/IrO2+Ta2O5 anodes in phenolsulfonic acid solution[J]. Acta Metall. Sin.(Engl. Lett.), 2000, 13(4): 937
[16] Hu J M, Zhang J Q, Meng H M, et al. Electrochemical activity, stability and degradation characteristics of IrO2-based electrodes in aqueous solutions containing C1 compounds[J]. Electrochim. Acta, 2005, 50(27): 5370
[17] Hu J M, Sun X J, Hou Y Y, et al. Degradation characteristics of IrO2-type DSA? in methanol aqueous solutions[J]. Electrochim. Acta, 2008, 53(7): 3127
[18] Beck F. Wear mechanisms of anodes[J]. Electrochim. Acta, 1989, 34(6): 811
[19] Vallet C, Tilak B, Zuhr R, et al.Rutherford backscattering spectroscopic study of the failure mechanism of (RuO2+TiO2)/Ti thin film electrodes in H2SO4 solutions[J]. J. Electrochem. Soc., 1997,144(4): 1289
[20] Hu J M, Meng H M, Zhang J Q, et al. Degradation mechanism of long service life Ti/IrO2-Ta2O5 oxide anodes in sulphuric acid[J]. Corros. Sci., 2002, 44(8): 1655
[21] Rossi A, Boodts J. Ir-based oxide electrodes: oxygen evolution reaction from mixed solvents[J]. J. Appl. Electrochem., 2002, 32(7):
null 735
[22] Zanta C L P S, de Andrade A R, Boodts J F C. Electrochemical behaviour of olefins: oxidation at ruthenium-titanium dioxide and iridium-titanium dioxide coated electrodes[J]. J. Appl. Electrochem., 2000, 30(4): 467
[23] Zanta C L P S, de Andrade A R, Boodts J F C. Solvent and support electrolyte effects on the catalytic activity of Ti/RuO2 and Ti/IrO2 electrodes: oxidation of isosafrole as a probe model[J]. Electrochim. Acta, 1999, 44(19): 3333
[24] Rodgers J D, Jedral W, Bunce N J. Electrochemical oxidation of chlorinated phenols[J]. Environ. Sci. Technol., 1999, 33(9): 1453
[25] Fino D, Jara C C, Saracco G, et al. Deactivation and regeneration of Pt anodes for the electro-oxidation of phenol[J]. J. Appl. Electrochem., 2005, 35(4): 405
[26] Li Y, Liu M, Xiang C, et al. Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions[J]. Thin Solid Films, 2006, 497(1/2): 270
[27] Ferreira M, Varela H, Torresi R M, et al. Electrode passivation cau-sed by polymerization of different phenolic compounds [J]. Electrochim. Acta, 2006, 52(2): 434
[28] E?erskis Z, Jusys Z. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part I: A cyclic voltammetry study[J]. J. Appl. Electrochem., 2001, 31(10): 1117
[29] Pani? V, Dekanski A, Vidakovi? T, et al. Oxidation of phenol on RuO2-TiO2/Ti anodes[J]. J. Solid State Electrochem., 2005, 9(1): 43
[30] Terashima C, Rao T N, Sarada B, et al. Electrochemical oxidation of chlorophenols at a boron-doped diamond electrode and their determination by high-performance liquid chromatography with amperometric detection[J]. Anal. Chem., 2002, 74(4): 895
[31] Wang J, Farrell J. Electrochemical inactivation of triclosan with boron doped diamond film electrodes[J]. Environ. Sci. Technol., 2004, 38(19): 5232
[32] Wang X M, Hu J M, Zhang J Q, et al. Characterization of surface fouling of Ti/IrO2 electrodes in 4-chlorophenol aqueous solutions by electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2008, 53(8): 3386
[33] Hou Y Y, Hu J M, Liu L, et al. Effect of calcination temperature on electrocatalytic activities of Ti/IrO2 electrodes in methanol aqueous solutions[J]. Electrochim. Acta, 2006, 51(28): 6258
[34] Ueda M, Watanabe A, Kameyama T, et al. Performance characteristics of a new type of lead dioxide-coated titanium anode[J]. J. Appl. Electrochem., 1995, 25(9): 817
[35] Hosoya K, Sugimoto K. Relationship between corrosion behavior of iron in methanol-water solutions and physicochemical characteristics of the solutions[J]. J. Jpn. Inst. Met., 1997, 61(3): 209
[36] Duo I, Michaud P A, Haenni W, et al. Activation of boron-doped diamond with IrO2 clusters[J]. Electrochem. Solid-State Lett., 2000 3(7): 325
null
[37] Ellis S R, Hampson N A, Ball M C, et al. The lead dioxide electrode[J]. J. Appl. Electrochem., 1986, 16(2): 159
[38] Tong S P, Ma C A, Feng H. A novel PbO2 electrode preparation and its application in organic degradation[J]. Electrochim. Acta, 2008, 53(6): 3002
[39] Yao Y W, Zhao C M, Zhu J. Preparation and characterization of PbO2-ZrO2 nanocomposite electrodes[J]. Electrochim. Acta, 2012, 69: 146
[40] Liu M, Leng S, Chen S Y, et al. Degradation of nitrobenzene wastewater with modified Ti/SnO2-Sb electrode[J]. Chem. J. Chin.Univ., 2013, 34(8): 1899 (刘淼, 冷粟, 陈嵩岳等. 改性Ti/SnO2-Sb电极降解硝基苯废水[J]. 高等学校化学学报, 2013, 34(8): 1899)
[41] Zhang L C, Xu L, He J, et al. Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration[J]. Electrochim. Acta, 2014, 117: 192
[42] Bock C, Smith A, MacDougall B. Anodic oxidation of oxalic acid using WOx based anodes[J]. Electrochim. Acta, 2002, 48(1): 57
[43] Bock C, MacDougall B. The electrochemical oxidation of organics using tungsten oxide based electrodes[J]. Electrochim. Acta, 2002 47(20): 3361
null
[44] Habazaki H, Hayashi Y, Konno H. Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment[J]. Electrochim. Acta, 2002, 47(26): 4181
[45] Kim K W, Lee E H, Kim J S, et al. A study on performance improvement of Ir oxide-coated titanium electrode for organic destruction[J]. Electrochim. Acta, 2002, 47(15): 2525
[46] Zhang Z X. .Techniques of Titanium Electrodes.[M]. 2nd ed Beijing: Metallurgical Industry Press, 2003 (张招贤. 钛电极工学[M]. 第二版. 北京: 冶金工业出版社, 2003)
[47] Zhao G H, Cui X, Liu M C, et al. Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode[J]. Environ. Sci. Technol., 2009, 43(5): 1480
[48] Wang Y Q, Gu B, Xu W L. Electro-catalytic degradation of phenol on several metal-oxide anodes[J]. J. Hazard. Mater., 2009, 162(2/3): 1159
[49] Shao D, Yan W, Li X L, et al. A highly stable Ti/TiHX/Sb-SnO2 anode: preparation, characterization and application[J]. Ind. Eng. Chem. Res., 2014, 53(10): 3898
[50] Chen A, Nigro S. Influence of a nanoscale gold thin layer on Ti/SnO2-Sb2O5 electrodes[J]. J. Phys. Chem., 2007, 107(48)B: 13341
[51] Carlesi J C, Fino D, Specchia V, et al. Electrochemical removal of antibiotics from wastewaters[J]. Appl. Catal., 2007, 70(1): B: 479
[52] Xu W L, Wang Y Q, Gao M G. Application of ultrasound in water treatment[J]. Technol. Water Treat., 2001, 27(2): 70 (许文林, 王雅琼, 高明国. 功率超声在有机废水处理中的应用[J]. 水处理技术, 2001, 27(2): 70)
[53] Trabelsi F, A?t-Lyazidi H, Ratsimba B, et al. Oxidation of phenol in wastewater by sonoelectrochemistry[J]. Chem. Eng. Sci., 1996, 51(10): 1857
[54] Zhao G H, Gao J X, Shen S H, et al. Ultrasound enhanced electrochemical oxidation of phenol and phthalic acid on boron-doped diamond electrode[J]. J. Hazard. Mater., 2009, 172(2/3): 1076
[1] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[2] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[3] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[4] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[5] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[6] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[7] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[8] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[9] 宋增意, 刘莉, 邓丽, 孙元, 周亦胄. N5镍基单晶高温合金在王水中的电化学溶解行为研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[10] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[11] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[12] 崔学军,代鑫,郑冰玉,张颖君. KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 227-232.
[13] 周和荣,胡碧华,姚望,洪新培,宋述鹏. 铝合金阳极氧化层在江津污染大气环境中暴露腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 273-278.
[14] 白子恒,黄运华,李晓刚,杨浪,董超芳,颜利丹,肖葵. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[15] 孙朝晖,Masoumeh Moradi,杨丽景,Robabeh Bagheri,宋振纶,陈艳霞. 越南芽孢杆菌对2507双相不锈钢加速腐蚀的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 659-664.