Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 580-586    DOI: 10.11902/1005.4537.2016.169
  研究报告 本期目录 | 过刊浏览 |
硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为
白子恒1,2,黄运华1,2,李晓刚1,2,3,杨浪1,2,董超芳1,2,颜利丹1,2,肖葵1,2()
1. 北京科技大学腐蚀与防护中心 北京 100083
2. 北京科技大学新材料技术研究院 北京 100083
3. 中国科学院宁波材料技术与工程研究所 宁波 315201
Environmental Corrosion in Industrial-marine Atmosphere at Qingdao of 7050 Al-alloy Anodized in Boric- and Sulfuric-acid Electrolyte
Ziheng BAI1,2,Yunhua HUANG1,2,Xiaogang LI1,2,3,Lang YANG1,2,Chaofang DONG1,2,Lidan YAN1,2,Kui XIAO1,2()
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2. Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
3. Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
全文: PDF(1212 KB)   HTML
摘要: 

通过青岛大气暴露实验,对比了未处理和经硫硼酸阳极化处理的7050铝合金在典型工业海洋大气环境中的腐蚀行为。采用失重法获得腐蚀速率;使用扫描电镜对腐蚀产物进行微观形貌观察;使用EDS和XRD对腐蚀产物进行元素分析和相组成分析;运用电化学阻抗法对腐蚀产物层及氧化膜层的保护作用进行分析。结果表明:未处理的7050铝合金暴露2 a后,产生了大面积的剥蚀,腐蚀产物主要为Al(HSO4)36H2O,Al4SO4 (OH)105H2O和NaAlSi3O8。硫硼酸阳极化处理的7050铝合金在青岛大气中暴露2 a后,局部出现点蚀,氧化膜对基体仍有良好的保护作用。硫硼酸阳极氧化预处理可以大幅度提高7050铝合金的耐蚀性。

关键词 大气腐蚀阳极化铝合金工业海洋大气7050铝合金    
Abstract

Corrosion behavior of 7050 Al-alloy, which was pre- anodized in electrolyte of boric-and sulfuric-acid, was assessed through field exposure in industrial-marine atmosphere for 2 a at Qingdao area. The corrosion rate was acquired from the relevant mass-lost data. The surface morphology, distribution of elements and the phase compositions of corrosion products were characterized by SEM, EDS and XRD, as well as the protectiveness of product scale and anodic film was evaluated by using EIS. It is indicated that the bare Al suffered from severe exfoliation corrosion with annual corrosion rate of 5.92 μma-1, and its corrosion product mainly consists of Al(HSO4)36H2O, Al4SO4(OH)105H2O and NaAlSi3O8; the formed corrosion product scale on the bare Al can provide protectiveness to the substrate to some extent, however, the anodized film can provide much better protectiveness in comparison with the formed oxide scale on bare Al.

Key wordsatmospheric corrosion    anodized aluminum alloy    industrial marine atmosphere    7050 aluminum alloy
    
基金资助:国家重点基础研究发展计划项目 (2014CB643300) 和国家材料环境腐蚀平台资助

引用本文:

白子恒,黄运华,李晓刚,杨浪,董超芳,颜利丹,肖葵. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
Ziheng BAI, Yunhua HUANG, Xiaogang LI, Lang YANG, Chaofang DONG, Lidan YAN, Kui XIAO. Environmental Corrosion in Industrial-marine Atmosphere at Qingdao of 7050 Al-alloy Anodized in Boric- and Sulfuric-acid Electrolyte. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 580-586.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.169      或      https://www.jcscp.org/CN/Y2016/V36/I6/580

Climate Result Pollutant Result
Average temperature 14.3 ℃ Sulfation rate 25.06 mgm-2d-1
Average RH 73.3% Sea salt particles depositon rate 18.77 mgm-2d-1
Rain 305.6 mma-1 SO42- of rain 7350 mgm-3
pH of rain 4.45~5.88 Cl- of rain 14269 mgm-3
表1  青岛环境参数及污染物含量
Time / a Bare Anodized
1 11.70 0.82
2 5.92 0.58
表2  未处理与经硫硼酸阳极化处理的7050铝合金在青岛大气暴露不同时间后的腐蚀速率
图1  未处理与经硫硼酸阳极化7050铝合金不同暴露实验周期的腐蚀表面宏观形貌
图2  未处理与硫硼酸阳极化7050铝合金的腐蚀产物微观形貌
图3  除锈后未处理与硫硼酸阳极化7050铝合金的表面微观形貌
Area C O Zn Mg Al Si S Cl
A 5.52 60.90 0.39 0.58 27.54 1.07 5.09 0.21
B 3.85 56.03 0.89 0.74 28.95 0.37 5.84 0.44
表3  未处理与硫硼酸阳极化7050铝合金腐蚀产物的EDS分析
图4  未处理7050铝合金暴露2 a的腐蚀产物XRD谱
图5  未处理与硫硼酸阳极化7050铝合金的Bode图及其拟合曲线
图6  未处理和经硫硼酸阳极化7050铝合金的等效电路图
Alloy RsΩcm2 RrΩcm2 WFcm-2Hz-1/2 RctΩcm2 RpΩcm2 RbΩcm2 ∑χ 2
Bare aluminum alloy 34.4 826 2.65×10-5 2.17×106 --- --- 1.65×10-4
Anodized aluminum alloy 39.8 --- --- --- 1.99×105 3.87×107 7.15×10-4
表4  未处理和经硫硼酸阳极化铝合金的电化学拟合参数
[1] Liu B, Peng C Q, Wang R C, et al.Recent development and prospects for giant plane aluminum alloys[J]. Chin. J. Nonferrous Met., 2010, 20(9): 1705
[1] (刘兵, 彭超群, 王日初等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9): 1705)
[2] Zhou H, Li X, Xiao K, et al.The corrosion behavior of aluminum alloy 7A04 under cyclic wet-dry immersion conditions[J]. Rare Met. Mater. Eng., 2009, 38(4): 293
[3] Ren J J, Zuo Y.The study on morphology and growth mechanism of pits on anodized aluminum[J]. J. Chin. Soc. Corros. Prot., 2003, 23(4): 198
[3] (任建军, 左禹. 铝阳极氧化膜的蚀孔形貌与蚀孔生长机理研究[J]. 中国腐蚀与防护学报, 2003, 23(4): 198)
[4] Du N, Wang S X, Zhao Q, et al.Effects of boric acid on microstructure and corrosion resistance of boric/sulfuric acid anodic film on 7050 aluminum alloy[J]. Trans. Nonferrous Met. Soc., 2012, 22: 1655
[5] Yang Y, Peng T, Wang D W, et al.Sulfuric acid-boric acid anodization process for Al alloys[J]. Electroplat. Pollut. Control, 2007, 27(5): 31
[5] (杨燕, 彭涛, 王大为等. 铝合金硫酸-硼酸阳极氧化工艺[J]. 电镀与环保, 2007, 27(5): 31)
[6] Dan Z, Muto I, Hara N.Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions[J]. Corros. Sci., 2012, 57(2): 22
[7] Dong C, Xiao K, Xu L, et al.Characterization of 7A04 aluminum alloy corrosion under atmosphere with chloride ions using electrochemical techniques[J]. Rare Met. Mater. Eng., 2011, 40(2): 275
[8] Knight S P, Salagaras M, Trueman A R.The study of intergranular corrosion in aircraft aluminium alloys using X-ray tomography[J]. Corros. Sci., 2011, 53(2): 727
[9] Bartolomé M A J, Río J F D, Escudero E, et al. Behaviour of different bare and anodised aluminium alloys in the atmosphere[J]. Surf. Coat. Technol., 2008, 202(12): 2783
[10] González J A, Morcillo M, Escudero E, et al.Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part I: Visual observations and gravimetric results[J]. Surf. Coat. Technol., 2002, 153(2/3): 225
[11] López V, González J A, Otero E, et al.Atmospheric corrosion of bare and anodised aluminium in a wide range of environmental conditions. Part II: Electrochemical responses[J]. Surf. Coat. Technol., 2002, 153(2/3): 235
[12] Syed S.Influence of the environment on atmospheric corrosion of aluminium[J]. Corros. Eng. Sci. Technol., 2010, 45(4): 282
[13] Vera R, Delgado D, Rosales B M.Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy[J]. Corros. Sci., 2006, 48(10): 2882
[14] Cui Z Y, Li X G, Man C, et al.Corrosion behavior of field-exposed 7A04 aluminum alloy in the Xisha tropical marine atmosphere[J]. J. Mater. Eng. Perform., 2015, 24(8): 2885
[15] Li T, Li X G, Dong C F, et al.Characterization of atmospheric corrosion of 2A12 aluminum alloy in tropical marine environment[J]. J. Mater. Eng. Perform., 2010, 19(4): 591
[1] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[2] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[3] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[5] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[6] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[7] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[8] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[9] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[10] 张鑫,戴念维,杨燕,张俊喜. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[11] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[12] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[13] 孙霜青,郑弃非,李春玲,王秀民,胡松青. 腐蚀产物对纯Al 8A06长期大气腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[14] 李东亮,付贵勤,朱苗勇. 湿热工业海洋大气中Si对桥梁钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
[15] 刘艳洁,王振尧,柯伟. 纯Al在3种典型沿海,工业和乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(1): 47-51.