Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (2): 90-96    
  研究报告 本期目录 | 过刊浏览 |
点缺陷模型在2205双相不锈钢中的应用
刘佐嘉1 程学群1 李晓刚1 刘小辉2
1. 北京科技大学腐蚀与防护中心 北京 100083;
2. 中国石油化工股份有限公司青岛安全工程研究院 青岛 266071
Application of PDM (Point Defect Model) on 2205 Duplex Stainless Steel
LIU Zuojia1, CHENG Xuequn1, LI Xiaogang1, LIU Xiaohui2
1. Corrosion and Protection Centre of University of Science and Technology Beijing, Beijing 100083, China;
2. China Petroleum & Chemical Corporation, Qingdao Safety Engineering Institute, SINOPEC, Qingdao 266071, China
全文: PDF(1866 KB)  
摘要: 采用电化学极化曲线和电化学阻抗技术对2205双相不锈钢在0.1%、1.0%及3.5%(质量分数,%)三种不同浓度的NaCl溶液中的腐蚀性能进行测试,采用点缺陷模型(PDM)对测试结果进行建模与分析。研究结果表明,2205双相不锈钢随着溶液浓度的升高抗点蚀能力下降,这是由于在钝化膜的生长过程中,氧离子缺陷产生于金属/膜界面,消耗于膜/溶液界面,而金属离子缺陷产生于膜/溶液界面,消耗于金属/膜界面;氧离子缺陷的迁移导致钝化膜的生长,而金属离子缺陷的迁移使得钝化膜发生溶解。同时,根据PDM模型理论并从金属相角度出发对2205不锈钢建立钝化膜溶解模型,可知2205双相不锈钢奥氏体相γ上的钝化膜可能比铁素体相α优先发生溶解。
关键词 点缺陷模型钝化膜阳极成膜电位2205双相不锈钢    
Abstract:The corrosion behavior of 2205 duplex stainless steel in 0.1%, 1.0% and 3.5% (mass%) NaCl solution by electrochemical measurements was investigated, respectively. The experimental analysis based on PDM (point defect model) shows that the pitting corrosion resistance of the material tends to be worse with the increasing of concentration of NaCl solution. When the passive film forms, oxygen ion vacancy is produced on metal/film interface and consumed on film/solution interface, however metal ion vacancy exists on film/solution interface and being consumed on metal/film interface. Migration of oxygen ion vacancy causes the growth of the passive film but it also destroys the film simultaneously. In addition, on the basis of PDM theory, a dissolution model of passive film has been established. The model explains that the passive film of 2205DSS on austenite γ phase probably dissolves faster than on ferrite α phase in the simulated marine environment.
Key wordsPDM (point defect model)    passive film    anodic formation potential    2205 duplex stainless steel
    
ZTFLH:  TG174.2  

引用本文:

刘佐嘉 程学群 李晓刚 刘小辉. 点缺陷模型在2205双相不锈钢中的应用[J]. 中国腐蚀与防护学报, 2013, 33(2): 90-96.
. Application of PDM (Point Defect Model) on 2205 Duplex Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2013, 33(2): 90-96.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I2/90

[1] Yand D J, Shen Z S. Corrosion Fundamental of Metals [M]. Beijing: Metallurgical Industry Press, 2003
(杨德钧, 沈卓身. 金属腐蚀学 [M]. 北京: 冶金工业出版社, 2003)
[2] Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 10: 369-380
[3] Wagner C. Formation of composite sacles consisting of oxidation of different metals [J]. J. Electrochem. Soc., 1956, 11: 627-633
[4] Wagner C. Oxidation of involving noble metals [J]. J. Electrochem. Soc., 1952, 10: 571-580
[5] MacDonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc., 1992, 139(12): 3434-3449
[6] Mackintosh W D, Plattner H H. The identification of the mobile ion during the anodic oxidation of silicon [J]. J. Electrochem. Soc., 1977, 124(3): 396-400
[7] Fattach-alhosseini A, Alemi M H, Banaei S. An Electrochemical impedance study of AISI 321 stainless steel in 0.5 M H2SO4 [J]. Int. J. Electrochem., 2011, 2011: 1-9
[8] Sikora J, Sikora E, MacDonald D D. The electronic structure of the passive film on tungsten [J]. Electrochem. Acta., 2000, 45(12): 1875-1883
[9] Fu Y, Lin C J, Cai W D. A study of the selective dissolution behavior of duplex stainless steel by micro-electrochemical technique [J]. Acta Metall. Sin., 2005, 41(3): 302-306
(付燕, 林昌健, 蔡文达. 微电化学技术研究双相不锈钢优选腐蚀行为 [J]. 金属学报, 2005, 41(3): 302-306)
[10] Cardoso M V, Amaral S T, Martini E M A. Temperature effect in the corrosion resistance of Ni-Fe-Cr alloy in chloride medium [J]. Corros. Sci., 2008, 50 (9): 2429-2436
[11] Nicic I, MacDonald D D. The passivity of type 316L stainless steel in borate buffer solution [J]. J. Nuclear Mater., 2008, 379: 54-58
[12] Cao C N, Zhang J Q. Introduction of Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2004
(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 科学出版社, 2004)
[13] Okmoto G, Shibata T. Stability of passive stainless steel in relation to the potential of passivation treatment [J]. Corros. Sci., 1970, 10(5): 371-378
[14] Sun W, E L H. The measurement for AC impedance of differential capacity of electrode [J]. J. Fushun Petroleum Inst., 2000, 20(2): 18-22
(孙伟, 鄂利海. 电极微分电容的交流阻抗测量方法 [J]. 抚顺石油学报, 2000, 20(2): 18-22)
[15] Sikora E, MacDonald D.D. Defining the passive state [J]. Solid State Ionics., 1997, 94(1-4): 141-150
[16] Sikora E, Sikora J, MacDonald D D. A new method for estimating the diffusivities of vacancies in passive films [J]. Electrochim. Acta, 1996, 41(6): 783-789
[17] MacDonald D D, Biaggio S, Song H. Steady-state passive films-interfacial kinetic effects and diagnostic-criteria [J]. J. Electrochem. Soc., 1992, 139: 170-176
[18] Liu Z J, Cheng X Q, Liu X H, et al. Calculation and analysis of diffusivity of point defects in passive film formed on 2205 duplex stainless steel and 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2010, 30(4): 276-277
(刘佐嘉, 程学群, 刘小辉等. 2205双相不锈钢与316L奥氏体不锈钢钝化膜内点缺陷扩散系数的计算分析 [J]. 中国腐蚀与防护学报, 2010, 30(4): 276-277
[19] Zhang S H, Tan Y, Liang K X. In-situ impedance investigation of 304 stainless steel between pit growth and repassivation state [J]. J. Chin. Soc. Corros. Prot., 2011, 31(2): 130-134
(张胜寒, 檀玉, 梁可心. 电化学阻抗谱法对304不锈钢孔蚀生长和再钝化阶段的原位研究 [J]. 中国腐蚀与防护学报, 2011, 31(2): 130-134)
[20] Liu Z J, Cheng X Q, Li X G. The influence of pH on type 316L stainless steel in simulated circulating cooling water [J]. NACE Int. Mater. Performance, 2010, 49(12): 64-68
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[5] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[6] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[7] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[8] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[9] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[10] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[11] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[12] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[13] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[14] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[15] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.