Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (2): 141-145    
  研究报告 本期目录 | 过刊浏览 |
高氮钢和321不锈钢的冲刷腐蚀行为
乔岩欣1,2,刘飞华1,任爱1,姜胜利2,郑玉贵2
1. 苏州热工研究院有限公司 苏州 215004
2. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
EROSION-CORROSION BEHAVIOR OF HIGH NITROGEN STAINLESS STEEL AND COMMERICAL 321 STAINLESS STEEL
QIAO Yanxin1,2, LIU Feihua1, REN Ai1, JIANG Shengli2, ZHENG Yugui2
1. Suzhou Nuclear Power Research Institute, Suzhou 215004
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(905 KB)  
摘要: 用喷射式冲刷腐蚀实验研究了高氮奥氏体不锈钢和商用321不锈钢在含砂介质中的冲刷腐蚀行为,并计算了其在冲刷腐蚀条件下的力学和腐蚀交互作用分量。在单相NaCl溶液中静态条件下,高氮钢的耐蚀性能高于321不锈钢,在双相流介质中高氮钢的抗冲刷腐蚀能力亦高于321不锈钢。冲刷腐蚀不但加速了溶液中氧的传质过程,还破坏了不锈钢表面的钝化膜,使不锈钢处于活性溶解状态,以致电化学腐蚀速率增大两个数量级。交互作用中纯力学作用所占的比重最大。
关键词 高氮不锈钢冲刷腐蚀极化曲线交互作用    
Abstract:The erosion-corrosion behavior of high nitrogen stainless steel and commercial 321 stainless steel in slurry flow was investigated by using a high-speed jet impingement erosion-corrosion apparatus. Meanwhile, the mass loss caused by erosion and corrosion and synergistic of corrosion and erosion was calculated. Compared to commercial 321 stainless steel, high nitrogen stainless steel has relatively superior corrosion resistance both in static NaCl solution and slurry flow. Erosion not only accelerated the traction of oxygen but also damaged the passive film formed on stainless steel. The damage of the passive film resulted in an active dissolution state and induced the corrosion current density increasing 100 times more than that in static solution. The mass loss caused by pure erosion was the dominant factor in total mass loss.
Key wordshigh nitrogen stainless steel    erosion-corrosion    potentiodynamic polarization curves    synergisticeffect
收稿日期: 2010-11-30     
ZTFLH: 

TG172.9

 
基金资助:

钢铁联合基金重点项目(50514310)资助

通讯作者: 乔岩欣qiaoyanxin@cgnpc.com.cn     E-mail: qiaoyanxin@cgnpc.com.cn
Corresponding author: Qiao Yanxin     E-mail: qiaoyanxin@cgnpc.com.cn
作者简介: 乔岩欣,1980年生,男,博士,高级工程师,研究方向为材料腐蚀与防护

引用本文:

乔岩欣,刘飞华,任爱,姜胜利,郑玉贵. 高氮钢和321不锈钢的冲刷腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145.
QIAO Yan-Xin, LIU Fei-Hua, REN Ai, JIANG Qing-Li, ZHENG Yu-Gui. EROSION-CORROSION BEHAVIOR OF HIGH NITROGEN STAINLESS STEEL AND COMMERICAL 321 STAINLESS STEEL. J Chin Soc Corr Pro, 2012, 32(2): 141-145.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I2/141

[1] Madsen B W. Measurement of erosion-corrosion synergism with a slurry wear test apparatus [J]. Wear, 1988, 123(2): 127-142

[2] Kamachi M U, Baldv R. High Nitrogen Steels and Stainless Steels: Manufacturing, Properties and Applications[M]. Beijing:Chemical Industry Press, 2006

    (卡曼奇.曼德里 U, 贝德威 R,李晶, 黄运华译. 高氮钢和不锈钢-生产、性能与应用[M]. 北京:化学工业出版社, 2006.)

[3] Liu W, Zheng Y G, Liu C S, et al. Cavitation erosion behavior of Cr-Mn-N stainless steels in comparison with 0Cr13Ni5Mo stainless steel [J]. Wear, 2003, 254(7-8): 713-722

[4] Fu W T, Zheng Y Z, Jing T F, et al. Resistance of a high nitrogen austenitic steel to cavitation erosion [J]. Wear, 2001,249(9): 788-791

[5] Fu W T, Zheng Y Z, Jing T F, et al. Structural changes after cavitation erosion for a Cr-Mn-N stainless steel [J]. Wear,1997, 205(1): 28-31

[6] Qiao Y X, Zheng Y G, Wu X Q, et al. Cavitation erosion properties of nitrogen bearing stainless steels [J]. Trib. Mater.Surf. Inter., 2007, 1(3): 165-172

[7] Fu X C, Chen R H. Physical Chemistry[M]. Beijing: Higher Education Press, 1979: 80

    (傅献彩, 陈瑞华. 物理化学[M]. 北京:高等教育出版社 1979: 80)

[8] Gutman E M. Chemical and Corrosion Protection of Metal Mechanics[M]. Beijing: Science Press, 1989: 34

    (古特曼 E M,金石译. 金属力学化学与腐蚀防护[M]. 北京: 科学出版社 1989: 34)

[9] Linderstron O. Physico-chemical aspects of chemically active ultrasonic cavitation in aqueous solution [J]. J. Acoust.Soc. Am., 1955, 27(4): 654-671

[10] Postlethwaite J, Tinker E B, Hawrylak M W. Erosion-corrosion in slurry pipelines [J]. Corrosion, 1974, 30(8):285-290

[11] Dean S W. Velocity-accelerated corrosion testing and predictions-An overview [J]. Mater. Perform., 1990, 29(9): 61-79

[12] Wood R J K, Hutton S P. The synergistic effect of erosion and corrosion: trends in published results [J]. Wear, 1990, 140(2):387-394

[13] Zheng Y G, Yao Z M, Zhang Y S, et al. Erosion-corrosion of synergism and erosion resistant alloy development[J]. Acta Metall. Sin., 2000, 36(1): 51-54

     (郑玉贵, 姚治铭, 张玉生等.冲刷与腐蚀的交互作用与耐冲刷腐蚀合金设计[J]. 金属学报, 2000, 36(1):51-54)

[14] Kwok C T, Man H C, Cheng F T. Cavitation erosion and damage mechanisms of alloys with duplex structures [J]. Mater. Sci.Eng., 1998, A242(1-2): 108-120

[15] Jiang X X, Li S Z, Li S. Corrosion Wear of Metals [M].Beijing: Chemical Industry Press, 2003

     (姜晓霞, 李诗卓, 李署.金属的腐蚀磨损[M]. 北京:化学工业出版社, 2003)

[16] Luo S Z, Zheng Y G, Li M C, et al. Effect of cavitation on corrosion behavior of 20SiMn low-alloy steel in 3% NaCl solution [J]. Corrosion, 2003, 59(7): 597-65

[17] Wei B M, Theory and Application of Metal Corrosion[M]. Beijing: Chemical Industry Press, 2004: 166

     (魏宝明.金属的腐蚀理论及应用 [M]. 北京: 化学工业出版社, 2004: 166)
[1] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[2] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[3] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[4] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[5] 余仁强,何建军,李微,任延杰,杨旺. 火电厂循环泵叶轮材料Cr30A在脱硫浆液腐蚀环境中的交互损伤失效行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[6] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[7] 姜爱国,张建文,辛亚男,丛晓明,董轼. 加氢裂化空冷器管束多相流冲刷腐蚀数值模拟[J]. 中国腐蚀与防护学报, 2019, 39(2): 192-200.
[8] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[9] 宋增意, 刘莉, 邓丽, 孙元, 周亦胄. N5镍基单晶高温合金在王水中的电化学溶解行为研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[10] 安朋亮, 梁平, 任建民, 史艳华, 刘峰, 陈思瑶. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征[J]. 中国腐蚀与防护学报, 2018, 38(1): 26-32.
[11] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[12] 李腾, 金伟良, 许晨, 毛江鸿. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[13] 戴芸,刘胜胆,邓运来,张新明. 7020铝合金在3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[14] 徐致孝,周和荣,姚望. 汽车冷轧钢DC06和DP600在NaHSO3溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
[15] 苗伟行,胡文彬,高志明,孔宪刚,赵茹,唐军务. 304不锈钢在海洋环境混凝土模拟液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.