Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (5): 371-376    
  研究报告 本期目录 | 过刊浏览 |
Ni-SiC纳米复合镀层腐蚀行为的研究
王平1,程英亮1,张昭2
1. 湖南大学材料科学与工程学院 长沙 410082
2. 浙江大学玉泉校区化学系 杭州 310027
CORROSION BEHAVIOR OF THE Ni-SiC NANOCOMPOSITE COATINGS
WANG Ping1, CHENG Yingliang1, ZHANG Zhao2
1. College of Materials Science and Engineering, Hunan University, Changsha 410082
2. Department of Chemistry, Yuquan Campus, Zhejiang University, Hangzhou 310027
全文: PDF(1434 KB)  
摘要: 通过电化学阻抗谱测试技术初步确定制备具有较好耐腐蚀性能镀层的工艺参数。利用扫描电子显微镜观察镀层的表面形貌;借助浸泡实验、电化学阻抗谱、极化曲线等方法对比分析了Ni-SiC纳米复合镀层和纯Ni镀层在0.5 mol/L NaCl溶液和1 mol/L HNO3 溶液中的耐腐蚀性能。结果表明,SiC纳米颗粒的加入提高了镀层的耐腐蚀性能,且镀层耐腐蚀性能随镀层中SiC纳米颗粒含量的增加而提高。
关键词 电沉积Ni-SiC纳米复合镀层耐腐蚀性能电化学阻抗谱    
Abstract:Ni-SiC nanocomposite coatings were prepared by means of the conventional electrocodeposition method. The technological parameters that make the nanocomposite coatings have a better corrosion resistance in 0.5 mol/L NaCl solution were preliminarily determined by using electrochemical impedance spectroscopy test(EIS). By comparing the charge transfer resistance of the coatings, it is shown that coatings prepared with current density range of 15 mA/cm2~20 mA/cm2 and SiC content of 6 g/L have better corrosion resistance. The structure of coatings were investigated by scanning electron microscopy(SEM). The corrosion resistance of Ni-SiC nanocomposite coatings and pure nickel coatings in 0.5 mol/L NaCl solution and 1 mol/L HNO3 solution was analyzed by immersion tests, electrochemical impedance spectroscopy and polarization curves. As immersion time prolonged in 0.5 mol/L NaCl solution, the charge transfer resistance of Ni-SiC nanocomposite coatings and pure nickel coatings reduced rapidly at initial stage and then became stable at later stage. Moreover, the charge transfer resistance of Ni-SiC nanocomposite coatings were higher than those of pure nickel coatings at the most of the immersion time. In addition, the charge transfer resistance of coatings containing SiC particles were 2 to 5 times higher than those of coatings without SiC particles when they were immersed in 1 mol/L HNO3 solution for 0.5 h. So the SiC nano-particles were helpful to improve the corrosion resistance of the coatings, which increased with increasing SiC content in the coatings. The effect of SiC nano-particles on the corrosion resistance was discussed in details.
Key wordselectrodeposition    Ni-SiC nanocomposite coatings    corrosion resistance    electrochemical impedance spectroscopy
收稿日期: 2010-04-06     
ZTFLH: 

TQ153

 
基金资助:

国家自然科学基金项目(50771092)资助

通讯作者: 程英亮     E-mail: deepblacksea@163.com
Corresponding author: CHENG Yingliang     E-mail: deepblacksea@163.com
作者简介: 王平,女,1986年生,硕士生,研究方向为复合电镀

引用本文:

王平,程英亮,张昭. Ni-SiC纳米复合镀层腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 371-376.
CHENG Yang-Liang. CORROSION BEHAVIOR OF THE Ni-SiC NANOCOMPOSITE COATINGS. J Chin Soc Corr Pro, 2011, 31(5): 371-376.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I5/371

[1] Yao Y W, Yao S W, Zhang L, et al. Electrodeposition and mechanical and corrosion resistance properties of Ni-W/SiC nanocomposite coatings [J]. Mater.Lett., 2007, 61(1): 67-70

[2] Garcia-Lecinaa E, Garcia-Urrutia I, Diez J A, et al. Electrochemical preparation and characterization of Ni/SiC compositionally graded multilayered coatings [J].Electrochim. Acta, 2009, 54(9): 2556-2562

[3] Wu B, Xu B S, Zhang B, et al. Preparation and properties of Ni/nano-Al2O3 composite coatings by automatic brush plating [J]. Surf. Coat. Technol., 2007, 201(16-17): 6933-6939

[4] Ciubotariu A C, Benea L, Lakatos-Varsanyi M, et al. Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3-Ni nanocomposite coatings [J]. Electrochim. Acta, 2008, 53(13): 4557-4563

[5] Feng Q Y, Li T J, Zhang Z T, et al. Preparation of nanostructured Ni/Al2O3 composite coatings in high magnetic field [J]. Surf. Coat. Technol., 2007, 201(14): 6247-6252

[6] Thiemig D, Bund A. Characterization of electrodeposited Ni-TiO2 nanocomposite coatings [J]. Surf. Coat.Technol., 2008, 202(13): 2976-2984

[7] Guo C, Zuo Y, Zhao X H, et al. Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings [J]. Surf. Coat. Technol., 2008, 202(14): 3385-3390

[8] Jeon Y S, Byun J Y, Oh T S. Electrodeposition and mechanical properties of Ni-carbon nanotube nanocomposite coatings [J]. J. Phys. Chem. Solids, 2008, 69(5-6): 1391-1394

[9] Zhou Y B, Ding Y Z. Oxidation resistance of co-deposited Ni-SiC nanocomposite coating [J]. Trans. Nonferrous Met. Soc.China, 2007, 17(5): 925-928

[10] Lee H K, Lee H Y, Jeon J M. Codeposition of micro-and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating [J]. Surf. Coat.Technol., 2007, 201(8): 4711-4717

[11] Burzynska L, Rudnik E, Koza J, et al. Electrodeposition and heat treatment of nickel/silicon carbide composites [J].Surf. Coat. Technol., 2008, 202(12): 2545-2556

[12] Tan C Y, Liu Y, Zhao X S, et al. Nickel co-deposition with SiC particles at initial stage [J]. Trans. Nonferrous Met. Soc. China, 2008, 18(5): 1128-1133

[13] Zhou Y, Zhang H, Qian B. Friction and wear properties of the co-deposited Ni--SiC nanocomposite coating [J].Appl. Surf. Sci., 2007, 253(20): 8335-8339

[14] Vaez i M R, Sadrnezhaad S K, Nikzad L. Electrodeposition of Ni-SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics [J]. Colloids. Surf. A: Physicochem. Eng.Aspects, 2008, 315(1-3): 176-182

[15] Hu F, Chan K C, Somg S Z, et al. Enhancement of corrosion resistance of electrocodeposited Ni-SiC composites by magnetic field [J]. J. Solid State Electrochem., 2007, 11(6): 745-750

[16] Low C T J, Wills R G A, Walsh F C. Electrodeposition of composite coatings containing nanoparticles in a metal deposit [J]. Surf. Coat. Technol., 2006, 201(1-2): 371-383

[17] Ataee-Esfahani H, Vaezi M R, Nikzad L, et al. Influence of SiC nanoparticles and saccharin on the structure and properties of electrodeposited Ni-Fe/SiC nanocomposite coatings [J]. J. Alloys. Compd., 2009, 484(1-2): 540-554
[1] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[6] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[7] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[10] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[11] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[12] 蒋斌, 曾利兰, 梁涛, 潘浩波, 乔岩欣, 张竞, 赵颖. 316L不锈钢表面超疏水微纳镍镀层定向电沉积工艺优化研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[13] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[14] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[15] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.