Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (4): 275-281    
  研究报告 本期目录 | 过刊浏览 |
循环压力对环氧涂层在模拟深海环境中失效行为的影响
唐俊文1,邵亚薇1,张涛1,孟国哲1,王福会1,2
1. 哈尔滨工程大学材料科学与化学工程学院腐蚀与防护实验室 哈尔滨 150001
2. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
EFFECT OF CYCLIC PRESSURE ON DEGRADATION BEHAVIOR OF EPOXY COATING IN SIMULATED DEEP OCEAN ENVIRONMENT
TANG Junwen1, SHAO Yawei1, ZHANG Tao1, MENG Guozhe1, WANG Fuhui1,2
1. Corrosion and Protection Laboratory, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2. State Key Laboratory for Corrosion and Protection, Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(1628 KB)  
摘要: 在模拟深海环境下,利用电化学阻抗技术并结合重量法,研究了循环压力对纯环氧涂层在3.5 mass% NaCl溶液中失效行为的影响。结果表明,循环压力条件下,涂层的阻抗行为呈周期性变化规律:在高压条件下浸泡时,有机涂层电容较高、涂层电阻较低;而常压条件下两者都较高。循环压力增大,腐蚀介质更容易扩散到涂层内部,使得涂层吸水量增加,涂层电阻降低,涂层防护性能恶化。
关键词 环氧涂层循环压力深海腐蚀电化学阻抗谱    
Abstract:The effect of cyclic pressure on the degradation behavior of the epoxy coating on carbon steel surface in 3.5% NaCl solution in a simulated deep-ocean environment was studied using electrochemical impedance spectroscopy (EIS) and weight method. The results showed that the EIS characteristics displayed a periodic variation under the cyclic pressure condition. The coating capacitance at high pressure was higher and the coating resistance was lower than that at atmospheric pressure during immersion periods, respectively. With increasing the cyclic pressure, the corrosion medium such as water had diffused to the coating/metal interface more easily. As a result, the increase of the water absorption capacity of the epoxy coating and the decrease of coating resistance were observed. The coating protection properties were obviously deteriorated.
Key wordsepoxy coating    cyclic pressure    deep ocean corrosion    electrochemical impedance spectroscopy(EIS)
收稿日期: 2010-05-24     
ZTFLH: 

TG174.41

 
通讯作者: 邵亚薇     E-mail: shaoyawei@hrbeu.edu.cn
Corresponding author: SHAO Yawei     E-mail: shaoyawei@hrbeu.edu.cn
作者简介: 唐俊文,男,1985年生,博士生,研究方向为材料腐蚀与防护

引用本文:

唐俊文,邵亚薇,张涛,孟国哲,王福会. 循环压力对环氧涂层在模拟深海环境中失效行为的影响[J]. 中国腐蚀与防护学报, 2011, 31(4): 275-281.
TANG Jun-Wen, SHAO Ya-Wei, ZHANG Shou, MENG Guo-Zhe, YU Fu-Hui. EFFECT OF CYCLIC PRESSURE ON DEGRADATION BEHAVIOR OF EPOXY COATING IN SIMULATED DEEP OCEAN ENVIRONMENT. J Chin Soc Corr Pro, 2011, 31(4): 275-281.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I4/275

[1] Schumcher M. Sea Water Corrosion Handbook [M].New Jersey: Noyes Data, 1979: 107-964

[2] Antoine E, Lemoine L, Peyronnet J, Collection of data on the corrosion of steels and on the marine environment at great depth [R]. Commission of the European Communities, 1982: 105

[3] Beccaria A M, Poggi G, Gingaud D, et al. Effect of hydrostatic pressure on passivating power of corrosion layers formed on 6061 T6 aluminum alloy in sea water [J]. Br. Corros. J., 1994, 29(1): 65-69

[4] Beccaria A M, Poggi G. Effect of some surface treatments on kinetics of aluminum corrosion in NaCl solutions at various hydrostatic pressures [J].Br. Corros. J., 1986, 21(1): 19-22

[5] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M].Beijing: Science Press, 2002: 154

    (曹楚南,张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002: 154)

[6] Wang C, Wu H, Yang H Y, et al. Electrochemical behavior of organic coatings in simulated deep ocean environment [J]. Corros. Sci. Prot.Technol., 2009, 21(4): 351-353

    (王成, 吴航, 杨怀玉等. 有机涂层在模拟深海环境中的电化学行为研究 [J]. 腐蚀科学与防护技术, 2009, 21(4): 351-353)

[7] Yan R, Geng Z, Wu H, et al. On failure mechanism of submarine surface coatings [J]. J.Naval Univ. Eng., 2005, 17(5): 38-42

    (阎瑞, 耿志, 吴行等. 潜艇表面涂层失效机理的研究 [J]. 海军工程大学学报, 2005, 17(5): 38)

[8] Gao Y, Zhang H, Zhang L X, et al. The study of test for permeability resistance in chemical medium of the SEBF/SLF anti-corrosion coating [J]. Total Corros. Control., 2002, 16(3): 30-33

    (高英, 张红, 张立新等. SEBF/SLF防腐蚀涂层耐介质渗透性试验研究 [J]. 全面腐蚀控制, 2002, 16(3): 30-33)

[9] Zhang J T, Hu J M, Zhang J Q, et al. Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution [J]. Prog. Org. Coat., 2004, 49: 293-301

[10] Zhang J T, Hu J M, Zhang J Q, et al.Studies of water transport behavior and impedance models of epoxy coated metals in NaCl solution by EIS [J]. Prog. Org. Coat., 2004, 51: 145-151

[11] Shao Y W, Gu S H, Zhang T, et al. Effect of size of mica filler on diffusion of water in epoxy coatings [J]. Paint Coat. Ind., 2007, 37: 11-14

     (邵亚薇, 顾胜飞, 张涛等. 云母填料尺寸效应对水在环氧涂层中扩散行为的影响 [J]. 涂料工业, 2007, 37: 11-14)
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[3] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[6] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[8] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[9] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[10] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[11] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[12] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[13] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[14] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[15] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.