Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (4): 270-274    
  研究报告 本期目录 | 过刊浏览 |
碳钢交流电腐蚀机理的探讨
翁永基1,王宁1,2
1. 中国石油大学(北京)理学院 北京 102200
2. 中国石油化工集团公司洛阳石油化工工程公司 洛阳 471003
CARBON STEEL CORROSION INDUCED BY ALTERNATING CURRENT
WENG Yongji1, WANG Ning1,2
1. College of Science, China University of Petroleum, Beijing 102200
2. Luoyang Petrochemical Engineering Corporation of SINOPEC, Luoyang 471003
全文: PDF(715 KB)  
摘要: 开展了碳钢交流电腐蚀失重试验及交流干扰下极化曲线测量,结果表明,在研究的交流电流密度0~250 A/m2范围内,碳钢交流电腐蚀速度与干扰强度符合幂函数方程。交流干扰对极化曲线的影响表现为降低了表面反应电阻Rp,及降低阴、阳极Tafel斜率。由此解释了交流电腐蚀特征与规律,并探讨了交流电腐蚀机理。
关键词 碳钢交流电腐蚀失重幂函数极化Tafel斜率    
Abstract:Mass loss tests were performed for carbon steel corrosion induced by alternating current,as well as the measurement of polarization curves under AC interference. The results show that the AC corrosion rate of carbon steel follows a power function with the AC interference intensity within AC current density 0~250 A/m2, which concerned in this paper. The effect of AC interference on the polarization curves (1) decreasing the surface reaction resistance, and (2) decreasing both of the anodic and cathodic Tafel slopes. Thereby, the AC corrosion characteristics and rules were well explained and the AC corrosion mechanism was also discussed.
Key wordscarbon steel    AC induced corrosion    mass loss    power function    polarization    Tafel slope
收稿日期: 2010-05-28     
ZTFLH: 

TG171

 
通讯作者: 翁永基     E-mail: weng_yj@139.com
Corresponding author: WENG Yongji     E-mail: weng_yj@139.com
作者简介: 翁永基,男,1945年生,教授,研究方向为石油、石化工业腐蚀与防护

引用本文:

翁永基,王宁. 碳钢交流电腐蚀机理的探讨[J]. 中国腐蚀与防护学报, 2011, 31(4): 270-274.
WENG Yong-Ji. CARBON STEEL CORROSION INDUCED BY ALTERNATING CURRENT. J Chin Soc Corr Pro, 2011, 31(4): 270-274.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I4/270

[1] Williams J F. Corrosion of metals under the influence of alternating current [J].Mater. Prot., 1966, 5(2): 52-53

[2] Hanson H R, Smart J. AC Corrosion on a Pipeline Located in an HVAC Utility Corridor [A].Corrosion/2004 [C]. New Orleans, 2004: 04209

[3] DD CEN/15280: 2006, Evaluation of a.c.corrosion likehood of buried pipelines -- Application to cathodically protected pipelines [S]. British Standard (BSI), 2006

[4] Yunovich M, Thompson N G. AC Corrosion: Corrosion Rate and Mitigation Requirements [A]. Corrosion/2004 [C].New Orleans, 2004: 04206

[5] Bertocci U. AC induced corrosion:The effect of an alternating voltage on electrodes under charge-transfer control [J]. Corrosion,1979, 35(5): 211-215

[6] Chin D T, Fu T W. Corrosion by alternating current: a study of the anodic polarization of mild steel in Na2SO4 solution [J].Corrosion, 1979, 35(11): 514-523

[7] Bolzoni F, Goidanich S, Lazzari L, et al. Laboratory Test Results of AC Interference on Polarized Steel, [A], Corrosion/2003 [C]. San Diego, 2003: 03704

[8] Chen J L, Weng Y J, Li Y Y. Measurement of couple current between buried pipeline and coupons [J]. Pipeline Tech. Equip., 2009(5): 19-22

    (陈敬龙, 翁永基, 李英义. 检查片与埋地管道间电偶电流的测量 [J]. 管道技术与设备, 2009(5): 19-22)

[9] Bolzoni F, Goidanich S, Lazzari L, et al. Laboratory Testing on the Influence of Alternated Current on Steel Corrosion [A], Corrosion/2004 [C]. New Orleans, 2004: 04208

[10] Nielsen L V, Nielsen K V, Baumgarten B, et al. AC induced corrosion in pipelines: Detection, characterization and mitigation [A], Corrosion/2004 [C].New Orleans, 2004: 04211
[1] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[3] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[5] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[6] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[7] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[10] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[11] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[12] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[13] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[14] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[15] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.