Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (1): 46-50    
  研究报告 本期目录 | 过刊浏览 |
阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响
林召强,马力,闫永贵
中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护国家重点实验室 青岛 266071
EFFECTS OF CATHODIC POLARIZATION ON THE HYDROGEN EMBRITTLEMENT SENSITIVITY OF WELDING LINE IN HIGH STRENGTH HULL STRUCTURAL STEEL
LIN Zhaoqiang, MA Li, YAN Yonggui
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266071
全文: PDF(2030 KB)  
摘要: 在恒定阴极电位下利用慢应变速率拉伸试验研究高强度船体结构钢焊缝的电化学性能和力学性能。结果表明,试样拉伸断裂主要发生在焊缝的熔合区;结构钢的阴极极化程度对抗拉强度和屈服强度的影响不大;随阴极电位负移,船体结构钢在海水中的延伸率、断裂时间和断裂应变率逐渐减小, 并且当施加阴极电位为-0.89 V(vs SCE)时各项性能最佳。同时,随着阴极电位负移,断裂方式逐渐从韧性断裂向脆性断裂发展,氢脆敏感性逐渐增加,在 -0.70 V~-0.89 V(vs SCE)之间氢脆敏系数低于5%,不发生氢脆;当电位负于-0.94 V(vs SCE),氢脆敏感性迅速提高,当极化电位为-0.99 V (vs SCE)时氢脆系数显著增大至20%,断口开始出现解理单元细小准解理断裂特征;在负于-1.04 V(vs SCE)时,氢脆系数已高于25%,进入危险区,且断口开始出现较多解理单元粗大的准解理、解理等氢脆断裂特征;随着电位继续负移至-1.14 V(vs SCE),断口完全出现解理组织、沿晶、穿晶结构或者两者混合的氢脆断裂特征。
关键词 氢脆阴极极化慢应变速率拉伸试验焊缝极化电位    
Abstract:Electrochemical properties and mechanical properties of welded high strength steel were investigated by the slow strain rate test (SSRT) method with applied constant cathodic potential. During tensile process the fracture occurred mainly in the weld fusion zone. There was no correlation between maximum tensile strength, yield strength, strength at failure, and hydrogen embrittlement. However, the elongation rate, time-to-fracture and strain-to-failure rate decreased with shifting potential of the negative direction. And the elongation rate, time-to-fracture and strain-to-failure rate displayed the highest values when the potential was -0.89 V (vs SCE). As the cathode potential shifted negatively, the fracture mode gradually shifted from ductile fracture to brittle fracture, and also the sensitivity of hydrogen embrittlement gradually increased. When the polarization potentials between -0.70~-0.89 V (vs SCE), the hydrogen embrittlement coefficient were less than 5%, the hydrogen embrittlement did not occured. When it was negative to -0.94 V (vs SCE), the hydrogen embrittlement susceptibility rapidly increased, while when the polarization potential was -0.99 V (vs SCE), the hydrogen embrittlement coefficient closed to 20% and the fracture surface exhibited some small cell cleavage characteristics of quasi-cleavage fracture. When the polarization potentials were negative to -1.04 V (vs SCE), the hydrogen embrittlement coefficient were more than 25%, and the material reached into the dangerous zone. The surface of fracture appeared more thick cell cleavage characteristics of quasi-cleavage, and cleavage fracture of hydrogen embrittlement. When the polarization potentials negative to -1.14 V (vs SCE), the specimen occured mainly cleavage organization, intergranular, transgranular structure or combination of the two of brittle fracture characteristics of hydrogen embrittlement.
Key wordshydrogen embrittlement    cathodic polarization    slow strain rate test    welding line    cathodic potential
收稿日期: 2009-12-15     
ZTFLH: 

O646

 
基金资助:

总装预研基金

通讯作者: 闫永贵     E-mail: yanyg@sunrui.net
Corresponding author: YAN Yonggui     E-mail: yanyg@sunrui.net
作者简介: 林召强,男,1983年生,硕士生,研究方向为金属材料的腐蚀与防护

引用本文:

林召强,马力,闫永贵. 阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2011, 31(1): 46-50.
LIN Shao-Jiang, MA Li, YAN Yong-Gui. EFFECTS OF CATHODIC POLARIZATION ON THE HYDROGEN EMBRITTLEMENT SENSITIVITY OF WELDING LINE IN HIGH STRENGTH HULL STRUCTURAL STEEL. J Chin Soc Corr Pro, 2011, 31(1): 46-50.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I1/46

[1] Li Z X, Liu X L, Li H, et al. Review of high-strength welding steel and its consumables [J]. New Technol. Process, 2007, (5): 16-18

    (栗卓新,刘秀龙,李虹等. 高强钢焊材及焊接性的国内外研究进展 [J]. 新技术新工艺. 2007, (5): 16-18)

[2] Tan Y W. Cathodic protection led to ZC-120 steel in seawater environments in hydrogen embrittlement [J]. Mater. Prot., 1988, 21(3): 10-13

    (谭耀文. 阴极保护导致ZC-120钢在海水中环境氢脆 [J]. 材料保护, 1988,21(3): 10-13)

[3] Billinghan J, Sharp J V. Review of the performance of high strength steels used offshore [J]. Health Safety Executive, 2003:111-117

[4] Qiu K Y, Wei B M, Fang Y H. The cathodic protection and susceptibility of hydrogen embrittlement of 16 Mn steel in 3% NaCl solution [J]. Nanjing Inst. Chem. Technol., 1992, 14(2): 8-14

    (邱开元,魏宝明,方耀华. 16Mn钢在3%氯化钠水溶液中的阴极保护及其氢脆敏感性 [J]. 南京化工学院学报,1992, 14(2): 8-14)

[5] Wang H R, Zeng Q F. Effects of cathodic protection on stress corrosion property of 921 steel in sea water [A]. Academic Exchanging Meeting of Electrochemistry and Test Method [C]: Wuhan: 2004: 164-169

    (王洪仁, 曾庆福. 阴极保护电位对921钢海水中应力腐蚀性能影响研究 [A].2004年腐蚀电化学及测试方法学术交流会 [C]. 武汉: 2004: 164-169)

[6] Shin-ichi K, Rie M, Toshihei M.Effect of applied cathodic potential on susceptibility to hydrogen embrittlement in high strength low alloy steel [J]. JSIJ Int., 2003, 43(4): 475-481

[7] Billingham M, Gareth J. Determining the compatibility of high strength steels to cathodic protection [A]. NACE International Corrosion 2008 Conference & Expo [C]. NACE, 08066: 1-14

[8] GB/T 15970-2000 The corrosion of metal and alloy. Stress-corrosion test [S].

    (GB/T 15970-2000. 金属和合金的腐蚀. 应力腐蚀实验 [S].)

[9] Wang Z,Xu X J,Ren C X. A quantitative study of environmental fracture behavior for weld metals of type 304 stainless steel [J]. J.Chin. Soc. Corros. Prot., 1999, 19(5): 265-272

    (王正,徐向俊,任晨星. 304钢焊缝环境断裂行为的定量研究 [J]. 中国腐蚀与防护学报,1999, 19(5): 265-272)
[1] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[2] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[3] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[6] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[7] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[8] 孔祥峰, 张婧, 姜源庆, 褚东志, 李春虎, 高楠, 吕婧, 邹妍. 基于失重法的水下焊接接头腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 226-232.
[9] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[10] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[11] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[12] 李腾, 金伟良, 许晨, 毛江鸿. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[13] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[14] 郭望,赵卫民,张体明,杜天海,王勇. 阴极极化和应力耦合作用下X80钢氢渗透行为研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 353-358.
[15] 张体明, 赵卫民, 郭望, 王勇. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.