Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (1): 40-45    
  研究报告 本期目录 | 过刊浏览 |
微/纳米力学技术对金属空泡腐蚀表层力学性质的定量表征
雍兴跃,吉静,张雅琴,李栋梁,张占佳
北京化工大学 北京 100029
QUANTITATIVE DETERMINATION OF MECHANICAL PROPERTIES FOR CAVITATION CORROSION SURFACE LAYER OF METAL BY MICRO/NANO MECHANICS MEASUREMENT TECHNOLOGY
YONG Xingyue, JI Jing, ZHANG Yaqin, LI Dongliang, ZHANG Zhanjia
Beijing University of Chemical Technology, Beijing 100029
全文: PDF(1379 KB)  
摘要: 采用微/纳米力学测试技术,在研究奥氏体不锈钢空泡腐蚀规律的基础上,对奥氏体不锈钢受到空化作用后其金属表层的纵向截面微米硬度和腐蚀表层的纳米力学性能进行定量表征,研究奥氏体不锈钢腐蚀表层力学性能参数及其空间分布,并初步探讨腐蚀表层力学性质劣化与金属空泡腐蚀间的关系。结果表明,奥氏体不锈钢在空泡腐蚀过程中,表层中由硬度较小的腐蚀表层、硬度较大的硬化层和机体层构成。在空化作用下,因空化与介质腐蚀交互作用引起奥氏体不锈钢空泡腐蚀表层力学性质劣化,使得奥氏体不锈钢发生严重腐蚀,并存在空泡腐蚀表层力学性质劣化的阈值。其中,奥氏体不锈钢的空泡腐蚀表层纳米硬度起主要作用。无量纲函数--空泡腐蚀表层纳米硬度与弹性模量之比, 可用于描述金属空泡腐蚀表层力学性质劣化程度,并可与金属空泡腐蚀评价深度相关联。
关键词 微纳米力学测试技术纳米硬度与弹性模量空泡腐蚀腐蚀表层空化作用力学性质劣化    
Abstract:The microhardness of the cross section of metal surface layer and the nano-mechanical properties of cavitation corrosion surface layer for austenitic stainless steel after cavitation corrosion test were quantitatively determined by micro/nano mechanics measurement technology on the base of researches on the cavitation corrosion of austenitic stainless steel. The nano-mechanical parameters of cavitation corrosion surface layer and their changes with displacement into surface including in the relation between the degradation of nano-mechanical properties of cavitation corrosion surface layer and cavitation corrosion were studied. It was found that the surface layer of austenitic stainless steel was composed of cavitation corrosion surface layer with smaller hardness, hardening layer with higher hardness and metal substrate under cavitation corrosion. The degradation of nano-mechanical properties for cavitation corrosion surface layer was induced by the interaction between cavitation and corrosion of media,resulting in serious cavitation corrosion of austenitic stainless steel. There was a critical value for the degradation of nano-mechanical properties of cavitation corrosion surface layer, below which austenitic stainless steel was seriously subjected to cavitation corrosion. And that nanohardness played a dominating role during cavitation corrosion of austenitic stainless steel. The ratio of nano-hardness to nano- elastic modulus (H/E) of cavitation corrosion surface layer is a dimensionless function, which can be used for comprehensively measuring degradation degree of cavitation corrosion surface layer of metal and for studying the relation between the degradation of nano-mechanical properties of cavitation corrosion surface layer and the mean depth of cavitation corrosion penetration of metals.
Key wordsmicro/nano mechanics measurement technology    nanohardness and elastic modulus    cavitation corrosion    corrosion surface layer    mechanical property degradation
收稿日期: 2010-04-10     
ZTFLH: 

TB383

 
基金资助:

国家自然科学基金(50871011)

通讯作者: 雍兴跃     E-mail: yongxy@mail.buct.edu.cn
Corresponding author: YONG Xingyue     E-mail: yongxy@mail.buct.edu.cn
作者简介: 雍兴跃, 男,1966年生,教授级高工,研究方向为力学与电化学腐蚀交互作用

引用本文:

雍兴跃,吉静,张雅琴,李栋梁,张占佳. 微/纳米力学技术对金属空泡腐蚀表层力学性质的定量表征[J]. 中国腐蚀与防护学报, 2011, 31(1): 40-45.
YONG Xin-Ti, JI Jing, ZHANG Ya-Qin, LI Dong-Liang, ZHANG Tie-Jia. QUANTITATIVE DETERMINATION OF MECHANICAL PROPERTIES FOR CAVITATION CORROSION SURFACE LAYER OF METAL BY MICRO/NANO MECHANICS MEASUREMENT TECHNOLOGY. J Chin Soc Corr Pro, 2011, 31(1): 40-45.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I1/40

[1] Liu W, Zheng Y G, Yao Z M, et al. Research progress on cavitation erosion of metallic materials [J]. J. Chin. Soc. Corros.Prot., 2001, 21(4):250-255

    (柳伟, 郑玉贵, 姚治铭等. 金属材料的空蚀研究进展 [J]. 中国腐蚀与防护学报, 2001, 21(4): 250-255)

[2] Luo S Z, Jing H M, Zheng Y G, et al. Cavitation corrosion behavior of CrMnN duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2003, 23(5):276-281

    (骆素珍,敬和民,郑玉贵等. CrMnN双相不锈钢空泡腐蚀行为研究 [J]. 中国腐蚀与防护学报,2003,23(5):276-281)

[3] Kwok C T, Man H C, Cheng F T. Cavitation erosion and damage mechanisms of alloys with duplex structures [J]. Mater. Sci. Eng.,1998, A242: 108-120

[4] Kwok C T, Cheng F T, Man H C. Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution [J]. Mater. Sci. Eng.,2000, A290: 145-154

[5] Hattori S, Ishikura R. Revision of cavitation erosion database and analysis of stainless steel data [J].Wear, 2010, 268: 109-116

[6] Wang Z Y, Zhu J H. Effect of primary factors on cavitation erosion resistance of some metastable austenitic metals [J]. Acta Metall. Sin., 2003, 39(3): 273-277

    (王再有, 朱金华. 亚稳奥氏体抗空蚀性能及其主要控制因素 [J]. 金属学报,2007, 43(6): 648-652)

[7] Wang Z Y, Zhu J H, Wang Z Z. Analysis on predominant factors characterizing erosion resistance of some ferrous alloys [J]. Acta Metall. Sin., 2007, 43(6): 648-652

    (王再有, 朱金华, 王章忠. 铁基合金抗冲蚀性能主要控制因素的分析 [J]. 金属学报, 2007, 43(6): 648-652)

[8] Liu W, Zheng Y G, Liu C S, et al. Cavitation erosion behavior of Cr-Mn-N stainless steels in comparison with 0Cr13Ni5Mo stainless steel [J], Wear, 2003, 254: 713-722

[9] Guo H X, Lu B T, Luo J L. Response of surface mechanical properties to electrochemical dissolution determined by in situ nano-indentation technique [J]. Electrochem. Commun., 2006, 8: 1092-1098

[10] Zhang T H. Micro/Nano Mechanics Test Technology and Its Application [M], Beijing: Machine Industry Press, 2005

     (张泰华编著. 微/纳米力学测试技术及其应用, 第一版 [M]. 机械工业出版社, 2005)

[11] Kusano Y, Hutchings I M. Analysis of nano-indentation measurements on carbon nitride films [J]., Surf. Coat. Technol,2003, 169-170: 739-742

[12] Jiang X X, Li S Z, Li S.Corrosive Wear of Metals [M]. Beijing: Chemical Industry Press,2003: 324-327

     (姜晓霞,李诗卓, 李署. 金属的磨损腐蚀 [M],北京: 化学工业出版社,2003)

[13] Niu L, Zhang C Q, Lin H C. Effect of elastic and plastic strain on electrochemical behavior of austenitic stainless steel [J], Corros. Sci. Prot. Technol., 2003, 15(4): 187-19

     (牛林,张长桥,林海潮. 弹、塑性应变对奥氏体不锈钢AISI321电化学行为的影响 [J],腐蚀科学与防护技术,2003,15(4):187-190)

[14] Cheng Y T, Cheng C M, Relationships between hardness, elastic modulus, and the work of indentation [J], Appl. Phys. Lett.,73(5), 1998: 614-616

[15] Yang R, Zhang T H, Jiang P, et al.Experimental verification and theoretical analysis of the relationships between hardness, elastic modulus, and the work of indentation [J], Appl. Phys. Lett, 92, 2008: 231906-1-3
 
No related articles found!