Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (1): 44-49    
  研究报告 本期目录 | 过刊浏览 |
 N80碳钢CO2/HAc腐蚀电化学过程
刘东;邱于兵;郭兴蓬
华中科技大学化学与化工学院  材料化学与服役失效湖北省重点实验室 武汉 430074
CORROSION ELECTROCHEMICAL BEHAVIOR OF N80 STEEL IN CO2/HAc ENVIRONMENTS
LIU Dong;QIU Yubing;GUO Xingpeng
School of Chemistry and Chemical Engineer; Huazhong University of Science & Technology; Hubei Key Laboratory of Materials Chemistry and Service Failure; Wuhan 430074
全文: PDF(739 KB)  
摘要: 

采用动电位扫描、恒电位极化和电化学交流阻抗测试技术,研究了乙酸(HAc)对N80碳钢在50℃、饱和CO2的1%NaCl溶液中的电化学腐蚀行为的影响,并讨论了阴极、阳极的反应机理。研究表明: HAc能够直接在电极表面还原,使阴极极限电流增加。 HAc未改变阳极反应机理,但能够加速中间产物的形成/溶解过程,从而加速阳极溶解过程。在饱和CO2溶液体系,乙酸盐易与碳酸生成HAc,而参与电化学反应。因此,无论是HAc还是乙酸盐均能够加速N80碳钢电极的CO2腐蚀。

关键词 N80碳钢乙酸CO2腐蚀腐蚀机理    
Abstract

The effect of acetic acid on corrosion behavior of carbon steel (N80) in CO2-saturated 1%NaCl solution at 50℃ was investigated by using polarization curve,potentiostatic polarization and electrochemical impedance spectroscopy. The attention was focused on the effect of acetic acid and acetate on the anodic and cathodic reactions respectively. The results indicate that acetic acid adsorbed on electrode surface can be reduced directly by electrochemical reaction, which resulting in increasing the cathodic limited current. Anodic reaction mechanism of N80 steel does not change when HAc is added, but HAc can speed up the formation/dissolution process of intermediates, thereby accelerates anode dissolution process. Acetate can hydrate easily to create acetic acid in carbon dioxide saturated environments, therefore, no matter acetic acid or acetate can increases the CO2 corrosion of N80 steel.

Key wordsN80 steel    acetic acid    carbon dioxide Corrosion    corrosion mechanism
收稿日期: 2007-05-14     
ZTFLH: 

TG172

 
基金资助:

中国石油天然气集团公司石油管力学和环境行为重点实验室资助

通讯作者: 郭兴蓬     E-mail: GuoXP@mail.hust.edu.cn
Corresponding author: GUO Xingpeng     E-mail: GuoXP@mail.hust.edu.cn

引用本文:

刘东 邱于兵 郭兴蓬.  N80碳钢CO2/HAc腐蚀电化学过程[J]. 中国腐蚀与防护学报, 2009, 29(1): 44-49.
LIU Dong-, GUO Xin-Peng. CORROSION ELECTROCHEMICAL BEHAVIOR OF N80 STEEL IN CO2/HAc ENVIRONMENTS. J Chin Soc Corr Pro, 2009, 29(1): 44-49.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I1/44

[1] Zhang X Y. Carbon Dioxide Corrosion and Control[M].Beijing:Chemical Industry Press,2000,30
(张学元~.二氧化碳腐蚀与控制[M].北京:化学工业出版社, 2000,30)
[2] He Q L,Meng H M,Yu H Y,et al. Recent developments in carbon dioxide corrosion of N80 well tube steel[J]. J. Chin. Soc. Corros. Prot.,2007,27(3):186-192
(何庆龙,孟惠民,俞宏英等,N80油套管钢CO2腐蚀的研究进展[J].中国腐蚀与防护学报 2007,27(3):186-192)
[3]  Chen C F,Lu M X,Zhao G X,et al.Characteristics of CO2 corrosion scales on 1\%Cr-containing N80 steel
[J]. J. Chin. Soc. Corros. Prot.,2003,23(6):330-334
(陈长风,路民旭,赵国仙等.含1%Cr的N80钢CO2腐蚀产物膜特征[J].中国腐蚀与防护学报 2003,23(6):330-334)
[4]  Lin G F,Zhao G X,Bai Z Q,et al. Effect of CO2 partial pressure on the morphology of corrosion metallic product scale[J].J. Chin. Soc. Corros. Prot.,2004,24 (5):284-288
(林冠发,赵国仙,白真权等. CO2分压对金属腐蚀产物膜形貌结果的影响[J].中国腐蚀与防护学报,2004,24(5):284-288)
[5]  Zhao G X,Chen C F,Lu M X,et al.The formation of product scale and mass transfer channels during CO2 corrosion[J]. J. Chin. Soc. Corros. Prot.,2002,22(6):363-366
(赵国仙,陈长风,路民旭等. CO$_{2}$腐蚀的产物膜及膜中物质交换通道的形成[J].中国腐蚀与防护学报,2002,22(6):363-366)
[6]  Ma W H,Pei X H,Gao F,et al. Corrosion behaviors of N80 steelin simulated water from deep gaswell containing CO2 [J].J. Chin. Soc. Corros. Prot.,2007,27(1):8-13
(马文海,裴晓含,高飞等. N80钢在模拟深层气井溶液中的CO2腐蚀行为[J].中国腐蚀与防护学报2007,27(1):8-13)
[7]  Hedges B,McVeigh L. The role of acetate in CO2 corro-sion:the double whammy[A]. Corrosion/99[C]. Houston,Texas:NACE,1999,21
[8]  Garsany Y,Pletcher D,Hedges B. Speciation and electrochemistry ofbrines containing acetate ion and carbon dioxide[J]. J. Electroanaly. Chem.,2002,538-539:285-297
[9]  Guo X P,Tomoe Y. The cathodic reactions in CO2-saturated DGA solution[A]. 45th Symposium of Materials and Environment[C].Jpn. Soc. Corros. Eng.,1998,D-107
[10]  Harned H S,Ehlers R W. The dissociation constant of acetic acid from 0 to 60 centigrade[J]. J. Am. Chem. Soc.,1933,55:652-654
[11]  Schmitt G. Fundamental aspects of CO2 corrosion of  steel[A].Corrosion/83[C]. Houston,Texas: NACE,1983
[12]  George K,Nesic S,DeWaard C. Electrochemical investigation and modeling of carbon dioxide corrosion of carbon steel in the presence of acetic Acid[A]. Corrosion/2004[C]. Houston,Texas:NACE,2004,4379

 

[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[3] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[6] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[7] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[8] 王希靖, 王博士, 杨超, 杨艳, 沈斌. 纯Ni母材及焊缝在熔融Na2SO4-K2SO4中热腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[9] 夏大海, 宋诗哲, 王吉会, 高志明, 胡文彬. 食品包装用镀锡薄钢板的腐蚀机理研究进展[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[10] 韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[11] 李琰,鲁金涛,杨珍,朱明,谷月峰. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[12] 孙冲, 王勇, 孙建波, 蒋涛, 赵卫民, 张彦春. 含杂质超临界CO2输送管线腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2015, 35(5): 379-385.
[13] 周京, 冯芝勇, 张金玲, 王社斌. 稀土Nd含量对AM60镁合金耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 185-191.
[14] 常新龙, 刘万雷, 赖建伟, 张晓军. LD10铝合金应力腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 347-350.
[15] 赵景茂 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的
缓蚀协同作用机理
[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.