Please wait a minute...
中国腐蚀与防护学报  2007, Vol. 27 Issue (6): 348-353     
  研究报告 本期目录 | 过刊浏览 |
苯并三氮唑及其衍生物与氧化亚铜晶体相互作用的MD模拟
张曙光;陈瑜;王风云;雷武;夏明珠
山东理工大学化工学院
Molecular Dynamics Simulation of Interaction between Cuprous Oxide Crystal and Benzotriazole Derivatives
;;;;
山东理工大学化工学院
全文: PDF(337 KB)  
摘要: 用分子动力学(MD)方法,模拟计算了4种铜缓蚀剂[苯并三氮唑(BTA)、5-羧甲基苯并三氮唑(CBTAH-ME)、5-羧丁基苯并三氮唑(CBTAH-BU)、5-羧辛基苯并三氮唑(CBTAH-OC)]与Cu2O晶体的相互作用。结果发现,缓蚀剂分子与Cu2O晶体的结合能排序为CBTAH-OC>CBTAH-BU>CBTAH-ME>BTA。对体系各种相互作用以及对关联函数g(r)的分析表明,体系结合能主要来自库仑作用的贡献。在与Cu2O(001)晶面结合过程中,BTA及其衍生物分子发生了扭曲变形,且分子中的N原子与Cu2O晶体中的Cu原子之间形成了配位键。
关键词 分子动力学苯并三氮唑及其衍生物氧化亚铜    
Abstract:The interactions between corrosion inhibitors, i.e. benzotriazole (BTA), methyl of carboxybenzotriazole (CBTAH-ME), butyl of carboxybenzotriazole (CBTAH-BU), octyl of carboxybenzotriazole (CBTAH-OC) and Cu2O crystal have been simulated by molecular dynamics (MD). Results show that the order of binding energies of corrosion inhibitors with Cu2O crystal is as follows: CBTAH-OC>CBTAH-BU>CBTAH-ME>BTA. The analysis of various interactions and pair correlation functions of all systems indicates that binding energies are mainly determined by coulomb interaction. Benzotriazole and its derivatives are deformed during their combining with the (001) face of Cu2O crystal, and coordination bonds are formed between the copper atoms in Cu2O crystal and the nitrogen atoms in corrosion inhibitors.
Key wordsmolecular dynamics    benzotriazole and its derivatives    cuprous oxide    corrosion inhibitors    binding ener
收稿日期: 2007-01-22     
ZTFLH:  O641。3  
通讯作者: 张曙光      E-mail: zhangsg04@yahoo.com.cn

引用本文:

张曙光; 陈瑜; 王风云; 雷武; 夏明珠 . 苯并三氮唑及其衍生物与氧化亚铜晶体相互作用的MD模拟[J]. 中国腐蚀与防护学报, 2007, 27(6): 348-353 .

链接本文:

https://www.jcscp.org/CN/Y2007/V27/I6/348

[1]Cruz J,Martinez-Aguilera L M R,Salcedo R,et al.Reactivityproperties of derivatives of 2-imidazoline:an ab initio DFT study[J].Int.J.Quantum Chem.,2001,85(4/5):546-556
[2]Bereket G,Hur E,!gretir C.Quantum chemical studies on someimidazole derivatives as corrosion inhibitors for iron in acidicmedium[J].J.Mol.Struct.(Theochem),2002,578:79-88
[3]Zhao W,Xia M Z,Lei W,et al.Quantum chemistry studies oforganophosphorus corrosion inhibitors[J].J.Chin.Soc.Corros.Prot.,2002,22(4):217-220(赵维,夏明珠,雷武等.有机膦缓蚀剂分子结构与缓蚀性能的量子化学研究[J].中国腐蚀与防护学报,2002,22(4):217-220)
[4]Zhang S G,Lei W,Xia M Z,et al.QSAR study on N-containingcorrosion inhibitors:quantum chemical approach assisted by topo-logical index[J].J.Mol.Struct.(Theochem),2005,732:173-182
[5]Bartley J,Huynh N,Bottle S E,et al.Computer simulation of thecorrosion inhibition of copper in acidic solution by alkyl esters of5-carboxybenzotriazole[J].Corros.Sci.,2003,45:81-96
[6]Arshadi M R,Lashgari M,Parsafar G A.Cluster approach to cor-rosion inhibition problems:interaction studies[J].Mater.Chem.Phys.,2004,86:311-314
[7]Lashgari M,Arshadi M R.DFT studies of pyridine corrosion in-hibitors in electrical double layer:solvent,substrate,and electricfield effects[J].Chem.Phys.,2004,299:131-137
[8]Ravichandran R,Nanjundan S,Rajendran N.Effect of benzotria-zole derivatives on the corrosion of brass in Na Cl solutions[J].Appl.Surf.Sci.,2004,236:241-250
[9]Tommesani L,Brunoro G,Frignani A.On the protective action of1,2,3-benzotriazole derivative films against copper corrosion[J].Corros.Sci.,1997,39(7):1221-1237
[10]Tang S Y,Dai Y Z.Industrial Cooling Water Treatment[M].Bei-jing:Chemical Industry Press,2003(唐受印,戴友芝.工业循环冷却水处理[M].北京:化学工业出版社,2003)
[11]Materials Studio 3.0.,Discover/Accelrys Software Inc.,San Diego,California,2004
[12]Sun H.COMPASS:An ab initio force field optimized for con-densed-phase application,overview with detail on alkane andbenzene compounds[J].J.Phys.Chem.B,1998,102:7338-7364
[13]Sun H,Ren P,Fried J R.The compass force field:parameteriza-tion and validation for phosphazenes[J].Comput.Theor.Polym.Sci.,1998,8(1/2):229-246
[14]Rigby D,Sun H,Eichinger B E.Computer simulations of poly(ethylene oxide):force field,pvt diagram and cyclization be-haviour[J].Polym.Int.,1998,44:311-330
[15]Burns G,Glazer A M.Space Groups for Solids State Scientists[M].Beijing:Higher Education Press,1981
[16]Mansfeld F,Smith T,Parry E P.Benzotriazole as corrosion in-hibitor for copper[J].Corrosion,1971,27:289-293
[17]Blajiev O,Hubin A.Inhibition of copper corrosion in chloridesolutions by amino-mercapto-thiadiazol and methyl-mercapto-thiadiazol:an impedance spectroscopy and a quantum-chemicalinvestigation[J].Electrochim.Acta,2004,49:2761-2770
[18]Huynh N,Bottle S E,Notoya T.Inhibition of copper corrosionby coatings of alkyl esters of carboxybenzotriazole[J].Corros.Sci.,2002,44:2583-2596
[19]Zhang S G,Lei W,Shi W Y,et al.Molecular dynamics simula-tion of interaction between calcite crystal and water-soluble poly-mers[J].Acta Phys.Chim.Sin.,2005,21(11):1193-1199(张曙光,雷武,石文艳等.水溶性聚合物与方解石晶体相互作用的MD模拟[J].物理化学学报,2005,21(11):1193-1199)
[20]Heermann D W,Translated by Qin K C.Computer Simulation Meth-ods In the Theoretical Physics[M].Beijing:Peking University Press,1996(Heermann D W著,秦克成译.理论物理学中的计算机模拟方法[M].北京:北京大学出版社,1996)
[21]Berendsen H J C,Postma J P M,van Gunsteren W F.Moleculardynamics with coupling to an external bath[J].J.Chem.Phys.,1984,81:3684-3690
[22]Allen M P,Tildesley D J.Computer Simulation of Liquids[M].Oxford:Clarendon Press,1987
[23]John A D.Lange's Handbook of Chemistry[M].13th ed.Knoxville:Mc Gill-Hill Press,1985
[24]Huang Y C,Hu Y J,Xiao J J,et al.Molecular dynamics simu-lation of binding energy of TATB-based PBX[J].Acta Phys.Chim.Sin.,2005,21(4):425-429(黄玉成,胡应杰,肖继军等.TATB基PBX结合能的分子动力学模拟[J].物理化学学报,2005,21(4):425-429)
[25]Chen Y,Xia M Z,Lei W,et al.Quantum chemical study ofbenzotriazole and its carboxyl-alkyl esters derivatives as corrosioninhibitors[J].Mater.Prot.,2006,39(7):4-8(陈瑜,夏明珠,雷武等.苯骈三氮唑及其羧基烷基酯衍生物缓蚀性能的量子化学研究[J].材料保护,2006,39(7):4-8)
[1] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[3] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[4] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[5] 赵景茂,赵雄,姜瑞景. 在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[6] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[7] 冯丽娟,赵康文,杨怀玉,唐囡,王福会,上官帖. 混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[8] 刘洁, 刘峥, 刘进, 谢思维. 3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟[J]. 中国腐蚀与防护学报, 2014, 34(2): 101-111.
[9] 吴刚,耿玉凤,贾晓林,孙霜青,胡松青. 异恶唑衍生物缓蚀剂缓蚀性能的理论评价[J]. 中国腐蚀与防护学报, 2012, 32(6): 513-519.
[10] 石文艳,夏媛,雷武,夏明珠,王风云,张其平, 张跃华. 5种氨基酸对铁缓蚀机理的分子动力学模拟[J]. 中国腐蚀与防护学报, 2011, 31(6): 478-482.