Please wait a minute...
中国腐蚀与防护学报  2007, Vol. 27 Issue (6): 342-347     
  研究报告 本期目录 | 过刊浏览 |
硫酸盐还原菌对铜合金生物腐蚀的比较研究
李进;许兆义;杜一立;牟伟腾;孙文刚
北京交通大学市政环境工程系
A Comparative Study on Sulfate Reducing Bacteria Influenced Corrosion of Copper Alloys
;;;;
北京交通大学市政环境工程系
全文: PDF(379 KB)  
摘要: 本文研究了发电厂循环冷却水环境中硫酸盐还原菌形貌特征和生长规律。应用EG&G的263A型恒电位仪比较研究了硫酸盐还原菌(SRB)生物膜对HSn-70-1AB和BFe30-1-1铜合金腐蚀的电化学行为;应用Cambridge S-360型扫描电镜,SAE X-射线能谱研究了HSn-70-1AB和BFe30-1-1铜合金表面生物膜特征并分析了其主要成分。结果表明,铜合金表面生物腐蚀与硫酸盐还原菌的生长特性密切相关,SRB处于对数生长期时,HSn-70-1AB和BFe30-1-1铜合金的自腐蚀电位和极化电阻均下降很快;而当SRB进入稳定生长阶段,两个铜合金的自腐蚀电位和极化电阻均缓慢下降。HSn-70-1AB和BFe30-1-1铜合金表面生物膜的形貌有较大区别。
关键词 HSn-70-1AB和BFe30-1-1铜合金硫酸盐还原菌    
Abstract:The growth characterization for sulfate reducing bacteria (SRB) under anaerobic condition was studied. Measurements of corrosion potential and the polarization resistance were used to investigate the electrochemical behavior of HSn-70-1AB and BFe30-1-1copper alloys in medium containing sulfate reducing bacteria. The results shows that the biological corrosion of copper alloys is closely related to growth characterization of SRB. The corrosion potential and the polarization resistance of electrode for copper alloys drastically moved toward negative direction as the SRB was in the logarithm growth stage. While both of them would slowly drop down as SRB entered into stable growth stage. Scanning electron Microscopy and X-ray diffraction were respectively used to analyze the morphology and chemical composition of the biofilm. The results showed that biofilm characterization formed on the copper alloys were totally different.
Key wordscopper alloys    sulfate reducing bacteria    biofilm    corrosion potential    polarization resistance
收稿日期: 2006-04-24     
ZTFLH:  TB304、Q93-335  
通讯作者: 李进     E-mail: jinli@center.njtu.edu.cn

引用本文:

李进; 许兆义; 杜一立; 牟伟腾; 孙文刚 . 硫酸盐还原菌对铜合金生物腐蚀的比较研究[J]. 中国腐蚀与防护学报, 2007, 27(6): 342-347 .

链接本文:

https://www.jcscp.org/CN/Y2007/V27/I6/342

[1]Bremmer P J,Geesey G G,Drake B.Atomic force microscopy ex-amination of the topography of a hydrated bacterial biofilm on acopper surface[J].Curr.Microbiol.,1992,24:223-230
[2]Steele A,Goddard D T,Beech I B.Atomic force microscopy studyof the biodeterioration of stainless steel in the presence of bacteri-al biofilms[J].Inter.Biodeterior.Biodegrad.,1994,34(1):35-46
[3]Lee W,Characklis W G.Corrosion of mild steel under anaerobicbiofilm[J].Corrosion,1993,49(3):186-199
[4]Liu J,Xu L M,Zheng J S.A study on corrosion behavior underthe biofilm of sulfate-reducing bacteria on Cu-Zn alloy[J].J.Chin.Soc.Corros.and Prot.,2001,21(6):345-351(刘靖,许立铭,郑家.硫酸盐还原菌生物膜下Cu-Zn合金的腐蚀研究[J].中国腐蚀与防护学报,2001,21(6):345-351)
[5]Wang Q F,Song S Z.Progress in marine biologically influencedcorrosion study[J].J.Chin.Soc.Corros.and Prot.,2002,22(3):184-188(王庆飞,宋诗哲.金属材料海洋环境生物污损腐蚀研究进展[J].中国腐蚀与防护学报,2002,22(3):184-188)
[6]Strickland L N,Fortnum R T,Du Bose B W.A case history of mi-crobiologically influenced corrosion in the lost hills oilfield[A].Proceedings of the NACE Annual Conference,Corrosion/1996[C].California,1996
[7]Rainha V L,Fonseca I T E.Kinetic studies on the SRB influencedcorrosion of steel:a first approach[J].Corros.Sci.,1997,39(4):807-813
[8]Iveson W P.Direct evidence for the cathodic depolarization theoryof bacterial corrosion[J].Science,1996,151:986-988
[9]Liu H F,Xu L M,Zheng J S.Influence of SRB biofilm on corrosionof carbon steel[J].J.Chin.Soc.Corros.Prot.,2000,20(1):41-46(刘宏芳,许立铭,郑家.SRB生物膜与碳钢腐蚀的关系[J].中国腐蚀与防护学报,2000,20(1):41-46)
[10]Little B,Wagner P,Mansfeld F.Microbiologically influenced cor-rosion of metals and alloys[J].Int.Mater.Rev.,1991,36:253-272
[11]Wagner P,Little B.Impact of alloying on microbiologically influ-enced corrosion.a review[J].Mater.Performance,1993,32(9):65-68
[12]Gentil V.Corrosion(3rd edition)[M].Brazil:LTC-Livros Tecni-cos e Cientificos Ed.SA.,1996
[13]Donlan R M.Correlation between sulfate reducing bacterial colo-nization and metabolic activity on selected metals in a recirculat-ing cooling water system[J].Corrosion,1992,183:1-16
[14]Postgate J R.The Sulfate Reducing Bacteria[M].Cambridge:Cambridge University Press,1984
[15]Liu G Z,Wu J H.Study on sulfate reducing bacteria influencedcorrosion of 90/10 Cu/Ni alloy by dual-cell[A].National Scientif-ic Seminar on Proceeding and Application in Corrosion Electro-chemistry[C].Kunming,2000(刘光洲,吴建华.双区电解法研究B10合金的硫酸盐还原菌腐蚀[A].全国腐蚀电化学进展与应用学术研讨会论文集[C].昆明,2000)
[16]Rainha V L,Fonseca I T E.Kinetic studies on the SRB influ-enced corrosion of steel:A first approach[J].Corros.Sci.,1997,39(4):807-813
[17]Keresate Zs,Telegdi J,Beczner J,et al.The influence of bio-cides on the microbiologically influenced corrosion of mild steeland brass[J].Electrochim.Acta,1998,43(1-2):77-85
[18]Marcus P.Surface science approach of corrosion phenomena[J].Electrochim.Acta,1998,43(1-2):109-118
[19]Rahmouni K,Keddam M,Srhiri A,Takenouti H.Corrosion ofcopper in 3%Na Cl solution polluted by sulphides ions[J].Cor-ros.Sci.,2005,47:3249-3266
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[4] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[5] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[6] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[7] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[8] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[9] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[10] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[12] 吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[13] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[14] 宋博强,陈旭,马贵阳,刘睿. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[15] 张帆, 刘宏伟, 陈碧, 刘宏芳. CO2和SRB共存产出水中咪唑啉衍生物的环境行为及缓蚀长效性研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 156-162.