Please wait a minute...
中国腐蚀与防护学报  2006, Vol. 26 Issue (4): 245-250     
  失效分析 本期目录 | 过刊浏览 |
不同钢制造LPG球罐在湿H2S环境下失效行为的对比研究
唐建群;巩建鸣;涂善东
南京工业大学205#
Comparison on the Failure Behaviour of the LPG Spherical Tank Manufactured from Different Steels under the Wet H2S Environment
;;
南京工业大学205#
全文: PDF(530 KB)  
摘要: 对16MnR钢和SPV50Q钢液化石油气(LPG)球罐在湿H2S环境下的失效行为进行了对比研究.通过观察从16MnR钢球罐上所取下的严重腐蚀球壳板的裂纹特 征和SPV50Q球罐内壁所作金相复膜照片的裂纹形貌,以及分析现场所测试的硬度和残余应力,表明:16MnR钢球罐的失效是由氢诱导开裂(HIC)所引起,损伤部位发生在母材上,而SPV50Q钢球罐则是由硫化物应力腐蚀开裂(SSCC)所造成,裂纹主要出现在焊接接头附近的热影响区(HAZ).
关键词 失效湿H2SHICSSCC    
Abstract:Comparative studies on the failure behaviour of the liquefied petroleum gas(LPG) spherical tanks,which were manufactured from 16MnR steel and SPV50Q steel respectively and working under the wet H2S environment,were conducted.By observing the crack feature of the samples cut from the severely corroded shell plates removed from the integral 16MnR spherical tank and the crack morphologies of the metallurgical replica photos made on the internal surface of SPV50Q tank on site,as well as analysing the hardness and welding residual stress measured on site,it was found that the failure of 16MnR tank was attributed to hydrogen-induced cracking(HIC) and the damages occurred on the base metal.While for SPV50Q tank,the failure was attributed to sulfide stress corrosion cracking(SSCC) and cracks mainly appeared in the heat-affected zone(HAZ) around the welded joints.
Key wordsfailure    wet H2S    hydrogen-induced cracking    sulfide stress corrosion cracking
收稿日期: 2005-12-05     
ZTFLH:  TG172  
通讯作者: 唐建群   

引用本文:

唐建群; 巩建鸣; 涂善东 . 不同钢制造LPG球罐在湿H2S环境下失效行为的对比研究[J]. 中国腐蚀与防护学报, 2006, 26(4): 245-250 .

链接本文:

https://www.jcscp.org/CN/Y2006/V26/I4/245

[1]Merick R D.Refinery experience with cracking in wet H2S environ-ment[J].Mater.Perf.,1988,27(1):30-36
[2]Cantwell J E.LPG storage vessel cracking experience[J].Mater.Perf.,1988,27(10):79-82
[3]Trivedi D K,Gupta S C.Cracking in liquid petroleum gas Hortonspheres[J].Mater.Perf.,1997,36(7):59-61
[4]Zhang Y L,Wang J,Shan X P,et al.Critical crack size of CNGcylinder steel in H2S environment[J].J.Chin.Soc.Corros.Prot.,2005,25(5):285-290(张亦良,王晶,陕小平等.CNG气瓶在不同H2S浓度中的临界裂纹尺寸[J].中国腐蚀与防护学报,2005,25(5):285-290)
[5]Wang J,Chen J J,Li X B,et al.The concentration distribution ofH2S in the waste water from oil platform and its influences on thecorrosion behavior of the steel structure of platform[J].J.Chin.Soc.Corros.Prot.,2003,23(1):38-45(王佳,陈家坚,李相波等.油田排污水中H2S的分布及其对平台钢结构设施腐蚀行为的影响[J].中国腐蚀与防护学报,2003,23(1):38-45)
[6]Zhang Y L,Li L S,Wang M,et al.Criteria to avoid sulfide stresscracking provided by EFC and its verification[J].J.Chin.Soc.Cor-ros.Prot.,2002,22(3):138-143(张亦良,李林生,王慕等.防止硫化氢应力腐蚀失效的EFC准则应用及验证[J].中国腐蚀与防护学报,2002,22(3):138-143)
[7]Ikeda A,Kaneko T,Ando Y.On the evaluation methods of sulfidestress cracking susceptibility of carbon and low alloy steels[J].Cor-ros.Sci.,1987,27:1099-1115
[8]Garber R.Higher hardenability low alloy steels for H2S resistant oilcountry tubular[J].Corrosion,1983,39(3):83-91
[9]NACE Standard RP0472.Methods and controls to prevent in-ser-vice environmental cracking of carbon steel weldments in corrosivepetroleum refining environments[S].1987
[10]Adam Mazur.Segregation bands’role in H2S cracking of steels[J].Mater.Perf.,1995,34(7):52-54
[11]Maria Sozańka,Jaroslav Sojka,Petra Bet′ákov,áet al.Examinationof hydrogen interaction in carbon steel by means of quantitativemicrostructure and fracture descriptions[J].Mate.Charact.,2001,46:239-241
[12]Snape E.Sulfide stress corrosion cracking of some medium and lowalloy steel[J].Corrosion,1967,23(6):154-172
[13]Albarran J L,Martinez L,Lopez H F.Effect of heat treatment onthe stress corrosion resistance of microalloyed pipeline steel[J].Corros.Sci.,1999,41:1037-1049
[1] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[2] 袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[3] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[4] 王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[5] 郭强, 陈长风, 李世瀚, 于浩波, 李鹤林. 冷焊修复层在H2S环境下的开裂行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[6] 赵洪涛, 陆卫中, 李京, 郑玉贵. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[7] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[8] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[9] 金小寒,胡吉明,张鉴清. 含有机物水溶液电解体系中的阳极材料及其失效特性[J]. 中国腐蚀与防护学报, 2015, 35(3): 199-204.
[10] 杨海, 陆卫中, 李京, 孙超. 环氧粉末涂层在1.5 mol/L NaCl溶液中的失效行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 382-388.
[11] 陈琛, 郭洪波, 宫声凯. 横向梯度温度场下热障涂层的失效分析[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[12] 胡春莲,侯尚林. 喷焊镍基合金液力反馈抽油泵柱塞失效分析[J]. 中国腐蚀与防护学报, 2012, 32(1): 80-84.
[13] 杨根柱,李庆华,刘国帅,王博,刘杰,熊金平,何少平,陆正良. W0714己内酰胺薄膜蒸发器下料管管壁腐蚀减薄失效分析[J]. 中国腐蚀与防护学报, 2011, 31(6): 488-492.
[14] 孙宝财,李淑欣,俞树荣,曾海龙. 改进BP算法的腐蚀管道剩余强度预测[J]. 中国腐蚀与防护学报, 2011, 31(5): 404-408.
[15] 饶思贤,万章,宋光雄,张铮,钟群鹏. 基于规则的晶间腐蚀和氢致开裂的失效模式诊断[J]. 中国腐蚀与防护学报, 2011, 31(4): 260-264.