Please wait a minute...
中国腐蚀与防护学报  2004, Vol. 24 Issue (3): 143-146     
  研究报告 本期目录 | 过刊浏览 |
碳钢氢腐蚀裂纹愈合的TEM观察
董超芳;李晓刚;陈华;李明
北京科技大学
TEM Study on the Healing of Crack Induced by Hydrogen in Carbon Steel
Chaofang Dong;Xiaogang Li;;
北京科技大学
全文: PDF(228 KB)  
摘要: 对含氢腐蚀裂纹的碳钢进行1000℃、10h的再热循环处理后,SEM和TEM观察表明,氢蚀裂纹发生完全愈合.Fe和C在γ-Fe中的快速扩散是碳钢中氢蚀裂纹愈合的必要条件.氢蚀裂纹愈合的动力是氢蚀气泡长大导致的塑性变形能Es,在Fe、C和氢原子扩散都足够快的情况下,氢蚀裂纹的愈合条件是Es2γ/r(γ为界面表面张力,r为裂纹半长).TEM观察表明,氢蚀裂纹形成使晶界发生严重的塑性变形,位错密度高且相互缠绕,氢蚀裂纹的愈合过程伴随着亚晶长大、晶界滑动的高温回复过程甚至再结晶,位错回复低密度、整齐排列的低能态,片层状珠光体的出现也表明基体组织发生修复.
关键词 碳钢氢蚀裂纹愈合TEM    
Abstract:The microstructures of the crack induced by hydrogen and crack healing have been studied by using the transmission electron microscopy(TEM).These specimens of carbon steel with the hydrogeninduced cracks were cyclically annealed at 1000℃ for 10 h.The SEM and TEM observations on the specimens before and after the heat treatment showed that the cracks could be healed completely by heat treatment.The healing of hydrogeninduced cracks was closely related to heat diffusion of Fe and C atoms.The driving force of crack healing resulted from the plastic deformation energy Es created by the growth of hydrogen bubbles or cracks.The critical condition of healing of bubbles or cracks isEs≥2γ/r(whereγis the surface tension,r is the half length of crack).During healing of the hydrogeninduced cracks,the dislocation density around grain boundaries decreased and the dislocation type transformed from tangle dislocation with high energy to vertical and regular dislocation with low energy.The formation of pearlite in distinct layers during healing process indicated the structure of carbon steel recovered too.
Key wordscarbon steel    hydrogen attack    crack healing    TEM
收稿日期: 2002-08-15     
ZTFLH:  TG172.3  
通讯作者: 董超芳     E-mail: dongchf@sina.com
Corresponding author: Chaofang Dong     E-mail: dongchf@sina.com

引用本文:

董超芳; 李晓刚; 陈华; 李明 . 碳钢氢腐蚀裂纹愈合的TEM观察[J]. 中国腐蚀与防护学报, 2004, 24(3): 143-146 .
Chaofang Dong, Xiaogang Li. TEM Study on the Healing of Crack Induced by Hydrogen in Carbon Steel. J Chin Soc Corr Pro, 2004, 24(3): 143-146 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2004/V24/I3/143

[1]GuptaTK .Crackhealingandstrengtheningofthermallyshockedaluminum[J].J.AmericanCeramicSociety,1976,59(5-6):259-262
[2]WangZhanyi,LiYZ ,MartinPHarmer,etal.Thermalhealingoflaser-inducedinternalcrackslithiumfluoridecrystal[J].J.Ameri canCeramicSociety,,1992,75(6):1596-1602
[3]SungRChoi,VeenaTikare.Crackhealingofaluminumwitharesidualglassyphase:strength,fracturetoughnessandfatigue[J].Mater.Sci.Eng.,1993,A171:77-83
[4]YaoF ,AndoK ,ChuMC ,SatoS .Staticandcyclicfatiguebe haviourofcrack-healedSi3N4/SiCcompositeceramics[J].J .Eu ropeanCeramicSociety,2001,21:991-997
[5]WeiDongbin,HanJingtao,XieJianxin,etal.Experimentalstudyoninnercrackhealinginsteelduringhotplasticdeforming[J].ActaMetall.Sin.,2000,36(6):622-625(韦东滨,韩静涛,谢建新等.热塑性变形条件下钢内部裂纹愈合的实验研究[J].金属学报,2000,36(6):622-625)
[6]JamesDPowers,AndreasMGlaeser.High-temperaturehealingofcracklikeflawsinMgandCa ion implantedsapphire[J].J.Ameri canCeramicSociety,1992,75(9):2547-2558
[7]KitamuraTakayuki,OhtaniRyuichi,ZhouWeisheng.Initiation,growthandhealingofsmallinnercracksundercreep-fatiguecon ditions[A].TransactionsoftheJapanSocietyofMechanicalEngi neersPartA[C].Tokyo,1993,59(566):2234-2240
[8]ZhouGuohui,GaoKewei,QiaoLijie,etal.Atomisticsimulationofmicrocrackhealinginaluminium[J].Mater.Sci.Eng.,2000,8:603-609
[9]YuZongsen.HydrogenAttackofSteel[M ].Beijing:ChemicalIn dustryPress,1987(余宗森.钢的高温氢腐蚀[M].北京:化学工业出版社,1987)
[10]LiXiaogang,DongChaofang,ChenHua.Healingofhydrogenat tackedcrackinaustenitestainlesssteelbyheattreatment[J].ActaMetall.Sin.,2001,37(10):1093-1096(李晓刚,董超芳,陈华.热处理愈合不锈钢氢蚀裂纹实验研究[J].金属学报,2001,37(10):1093-1096)
[11]DongChaofang,LiXiaogang,ShenZhuoshen.Crackhealingofhy drogenattackincarbonsteelbyheattreatment[J].J.UniversityofScienceandTechnologyBeijing,2001,23(4):352-356(董超芳,李晓刚,沈卓身.热处理作用下碳钢氢腐蚀裂纹愈合规律[J].北京科技大学学报,2001,23(4):352-356)
[12]ZhouKechao,HuangBaiyuan,QuXuanhui.DislocationmovementduringsuperplasticdeformationofTi33Al3Cr0.5Moalloy[J].Chin.J.RareMetals,1999,23(5):394-396(周科朝,黄伯云,曲选辉.TiAl基合金超塑性变形中的位错运动[J].稀有金属,1999,23(5):394-396)
[1] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[3] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[4] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[5] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[6] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[7] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[8] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[9] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[10] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[11] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[12] 程庆利,陶彬,刘栓,刘全桢,张卫华,田松柏,王立平. 原油沉积水对Q235B碳钢的腐蚀影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 126-134.
[13] 郝永胜,Luqman Abdullahi SANI,宋立新,徐国宝,葛铁军,方庆红. 中性和酸性溶液中Q235碳钢表面沉积植酸转化膜的耐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[14] 王吉会,闫华杰,胡文彬. 钼酸盐插层锌铝铈水滑石的制备与缓蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 637-644.
[15] 刘宏伟,熊福平,吕亚林,葛承宣,刘宏芳,胡裕龙. 动态条件下十二胺对Q235碳钢CO2腐蚀的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.