Please wait a minute...
中国腐蚀与防护学报  2004, Vol. 24 Issue (1): 25-28     
  研究报告 本期目录 | 过刊浏览 |
人工神经网络模型预测不绣钢在高温水中的应力腐蚀破裂行为
郭浩;吕战鹏;冯国强;蔡旬;杨武
上海交通大学材料学院
Predicting SCC Behavior of Austenitic Stainless Steels in High Temperature Water by Artificial Neural Network
Hao Guo;Zhanpeng Lv;Guoqiang Feng;Xun Cai;Wu Yang
全文: PDF(173 KB)  
摘要: 采用两种基于人工神经网络(ANN)的经验学习方法,即双层感知器(DLP)模型和Elman反馈(EF)模型,分析应力腐蚀破裂(SCC)数据,预测奥氏体不锈钢在高温水(HTW)中的SCC敏感性。对304不锈钢(SS)和316SS的两组SCC数据,DLP模型经过长时间的训练周次并不收敛,而EF模型在有限的时间内收敛到一稳定值。304SS和316SS的SCC敏感性依赖于温度(T)、溶解氧浓度(DO)、氯离子浓度([Cl-])以及电位(E)。采用EF模型,待预测样本数据被包含在训练数组里(方法Ⅰ)比不包含(方法Ⅱ)的情况有更高的预测率。用于EF模型的SCC阈值(ThV)影响预测率,当ThV≤0.6时,对304SS而言,预测率的范围大约是0.66~0.90(方法Ⅰ),0.60~0.79(方法Ⅱ);对316SS,预测率范围约为0.81~0.98(方法Ⅰ),0.78~0.90(方法Ⅱ),从预测率平均值来看,预测率服从正态分布,0.5应为最佳阈值。EF模型对定性预测ASS在高温水中的SCC行为有较高的预报率,是一个很有用的工具。
关键词 应力腐蚀破裂人工神经网络304SS316SS    
Abstract:Two kinds of empirical learning methods based on artificial neural network(ANN),i.e., double layer perceptron(DLP) model and Elman feedback(EF) model,have been used to analyze SCC data and predict the SCC susceptibitlity of austenitic stainless steels in high temperature water(HTW). The results indicated that DLP model could not converge after long training epochs while EF model could reach a steady value within limited training epochs for the SCC data of stainless steels(SS).The SCC susceptibility fo 304SS and 316SS in HTW depends on the parameters such as temperature(T), dissolved O2 content(DO), chloride ion content ([Cl-]) and electrode potential(E). The threshold value(ThV) for SCC used in the EF model affected the prediction ratios. For THV<=0.6, the ranges of prediction ratio were ca.0.66-0.90for method Ⅰ(including the data to be predicted) and 0.60~0.79 for method Ⅱ(excluding the data to be predicted) for 304SS, ca.0.81~0.98 for method Ⅰ and 0.78~0.90 for method Ⅱ for 316SS. The curves of mean value of prediction ratios show that the prediction ratios have the characteristics of normal distribution and the best ThV is 0.5. The EF model is a very useful tool for qualitatively predicting the SCC behaviour of austenitic stainless steels in HTW.
Key wordsstress corrosion cracking    artificial neural network    304SS steel    316SS steel    high temperature water    e
收稿日期: 2003-07-08     
ZTFLH:  TG172.9/TP183  
通讯作者: 郭浩   

引用本文:

郭浩; 吕战鹏; 冯国强; 蔡旬; 杨武 . 人工神经网络模型预测不绣钢在高温水中的应力腐蚀破裂行为[J]. 中国腐蚀与防护学报, 2004, 24(1): 25-28 .
Hao Guo, Zhanpeng Lv, Guoqiang Feng, Xun Cai, Wu Yang. Predicting SCC Behavior of Austenitic Stainless Steels in High Temperature Water by Artificial Neural Network. J Chin Soc Corr Pro, 2004, 24(1): 25-28 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2004/V24/I1/25

[1]ZhangLM .ModelsandApplicationsofArtificialNeuralNetworks[M].Shanghai:FudanUniversityPress,1993(张立明,人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993)
[2]LouST ,ShiY .SystemAnalysisandDesignBasedonMETLAB -neuralNetworks[M].Xi′an:Xi′anElectronicsScienceandTechnologyUniver sityPress,1998(楼顺天,施阳.基于MATLAB的系统分析与设计———神经网络[M].西安:西安电子科学技术大学出版社,1998)
[3]YangW ,ZhangM ,ZhaoG ,CongletonJ .AcomparisonofU -bendandslowstrainrateprocedureforassessingtheSCCresistanceoftype304stainlesssteelinhigh-temperaturewater[J].Corrosion,1991,47(4):226-233
[4]GordonBarryM .Theeffectofchlorideandoxygenonthestresscorrosioncrackingofstainlesssteels:reviewofliterature[J].MaterialsPerfor mance,1980,19(4):29-37
[5]SturrockCP ,BogaertsWF .Empiricallearninginvestigationsofthestresscorrosioncrackingofausteniticstainlesssteelsinhigh-tempera tureaqueousenvironments[J].Corrosion,1997,53(4):333-343
[6]ClarkeWL ,GordonGM .Investigationofstresscorrosioncrackingsus ceptibilityofFe-Ni-Cralloysinnuclearreactorwaterenvironments[J].Corrosion,1973,29(1):1-12
[7]HishidaMamoru,NakadaHiroshi.Constantstrainratetestingoftype304stainlesssteelinhightemperaturewater-partⅡ:aninvestigationofthechlorideeffectonstresscorrosioncracking[J].Corrosion,1977,33(11):403-407
[8]YangWu,ZhaoGuozhen,ZhangMeijie,CongletonJohn.AnAESinves tigationofthesurfacefilmsformedonstresscorrosiontestspecimensoftype304stainlesssteelinhightemperaturewater[J].Corros.Sci.,1992,33(1):89-102
[9]CongletonJ,BerrisfordRA ,YangW .Stresscorrosioncrackingofsensi tizedtype304stainlesssteelindopedhigh-temperaturewater[J].Cor rosion,1995,51(12):901-910
[10]NuemannPD ,GriessJC .Stresscorrosioncrackingoftype347stainlesssteelandotheralloysinhightemperaturewater[J].Corrosion,1963,19:345t-353t
[11]CongletonJ,YangW .Theeffectofappliedpotentialonthestresscorro sioncrackingofsensitizedtype316stainlesssteelinhightemperaturewater[J].Corros.Sci.,1995,37(3):429-444
[12]AndrensenPL .Environmentallyassistedgrowthrateresponseofnon sensitizedAISI316gradestainlesssteelsinhightemperaturewater[J].Corrosion,1988,44(7):450-460
[13]YangW ,CongletonJ,Kohneh-ChariO ,SajdlP .Thestrainforstresscorrosioncrackinitiationintype316stainlesssteelinhightemperaturewater[J].Corros.Sci.,1992,33(5):735-750
[14]YangW ,ZhuXY ,LiLX ,HuaHZ ,YangHG .Stresscorrosioncrack ingofsensitizedtype316stainlesssteelinhightemperaturewater[J].J.Chin.Soc.Corros.Prot.,1993,13(2):126-136(杨武,朱锡英,李丽霞,华慧中,杨鸿根.敏化316不锈钢在高温水中的应力腐蚀破裂[J].中国腐蚀与防护学报,1993,13(2):126-136)
[15]CongletonJ,ShihHC ,ShojiT ,ParkinsRN .Thestresscorrosioncrack ingoftype316stainlesssteelinoxygenatedandchlorinatedhightem peraturewater[J].Corros.Sci.,1985,25(8/9):769-788
[16]CongletonJ,ZhengW ,HuaH .Stresscorrosioncrackingofannealedtype316stainlesssteelinhightemperaturewater[J].Corrosion,1990,46(8):621-627
[1] 任岩, 钱余海, 张鑫涛, 徐敬军, 左君, 李美栓. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] 王雷, 董俊华, 韩达, 梁坚坤, 李权, 柯伟. 含铜钢在1150 ℃高温保温条件下的铜偏聚现象[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[3] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[5] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[6] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[7] 王海卫, 常森, 栾新刚, 宋雪梅, 王稹, 李彦樟, 陈建利, 张计荣, 韩明, 丘丹圭. 纳米Al2O3改性SiBCN陶瓷高温粘接剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[8] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[9] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[10] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[11] 李烽杰,陈明辉,张哲铭,王硕,王福会. 金属搪瓷高温防护涂层的制备及其抗热震行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 411-416.
[12] 艾鹏,刘礼祥,李晓罡,姜文涛. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[13] 余仁强,何建军,李微,任延杰,杨旺. 火电厂循环泵叶轮材料Cr30A在脱硫浆液腐蚀环境中的交互损伤失效行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[14] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[15] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.