Please wait a minute...
中国腐蚀与防护学报  1999, Vol. 19 Issue (3): 144-150     
  研究报告 本期目录 | 过刊浏览 |
DZ-40M 钴基合金低压气相沉积铝化物涂层的高温氧化行为
刘培生
中国科学院金属研究所
HIGH TEMPERATURE OXIDATION BEHAVIOR OF LOW PRESSURE GAS PHASE DEPOSITED ALUMINIDE COATINGS ON Co-BASE SUPERALLOY DZ40m
Peisheng Liu
全文: PDF(197 KB)  
摘要: 以新型定向凝固钴基合金DZ40M为基体,对其低压化学气相沉积铝化物涂层的高温氧化行为作初步探讨。结果表明,该涂层在900~1100℃的静态空气氧化过程中有一个平稳期,沉积渗剂中加入Ti及提高氧化温度均可加速涂层的氧化和退化,使平稳期提前结束。由于生成了θ-Al2O3,使得900℃时的氧化增重大于1000℃时的氧化增重,而1000℃时的氧化增重又大于1050℃时的氧化增重。
关键词 DZ40M钴基合金铝化物涂层高温氧化    
Abstract:High temperature oxidation behavior of aluminide coatings obtained by low pressure gas phase deposition under 0~0.014MPa at 1080℃ for 4 hours on Co-base superalloy DZ40M has been primarily investigated.The results indicated that isothermal oxidation process of the coatings in air at 900~1100℃ showed three stages,including the initial,the stable and the accelerative.During the initial stage the coating oxidation controlled by interface reaction developed rapidly.The stable stage was controlled by diffusion within oxide film and proceeded very slowly.Because the degeneration of the coatings obsturcted the formation of the protective oxide scale,the samples were oxidized stronhly during the accelerative stage.The addition of Ti during deposition and increase in temperature accelerated the oxidation and degeneration of the coating, and transfered the stable oxidation stage into the accelerative.Due to the formation of θ-Al2O3 the oxidation weight gains of the coatings at lower temperature were more than that at higher temperature,thus decreased in the order:at 900℃,1000℃ and 1050℃.At 1050℃,only α-Al2O3 appeared.
Key wordsCo-base superalloy DZ40M    Aluminide coating    High temperature oxidation
收稿日期: 2005-07-22     
通讯作者: 刘培生   
Corresponding author: Peishen Liu   

引用本文:

刘培生 . DZ-40M 钴基合金低压气相沉积铝化物涂层的高温氧化行为[J]. 中国腐蚀与防护学报, 1999, 19(3): 144-150 .
Peisheng Liu. HIGH TEMPERATURE OXIDATION BEHAVIOR OF LOW PRESSURE GAS PHASE DEPOSITED ALUMINIDE COATINGS ON Co-BASE SUPERALLOY DZ40m. J Chin Soc Corr Pro, 1999, 19(3): 144-150 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1999/V19/I3/144

1管恒荣,姚向东,张静华,张志亚,李英敖,胡壮以.金属学报,1995;31(增刊):S308
2姚向东,张静华,张志亚,李英敖,管恒荣,胡壮麒. 金属学报,1995,31(增刊):S304
3方互.金属学报,1975,11(1):89
4Redden T K. Thansactions of The Metallurgical Society of AILE, 1968, 242: 1695
5Levinstein M A, GrenierJ W. US Patent 3415672, 1968
6[苏]π.T科洛梅采夫著(1979),马志春译.耐热扩散涂层,北京:国防工业出版社,1988.132
7 Birks N, Meter G H著,赵公台和赵克清译.金属高温氧化导论,北京:冶金工业出版社, 1988. 3
8 Prescott Rt Graham M J. Oxid. Met., 1992, 38: 233
9 Schumann E. Oxid. Met, 1995, 43: 157
10 Newcomb S B, Bennett M J Ed.Microscopy of Oxidation, 1993,(2): 243
11 Rybicki G C, Smialek J L, James L S. Oxid. Met., 1989, 31: 275
12 Sigler D R. Oxid. Met., 1991, 36: 57
[1] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[2] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[3] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[4] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[5] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[6] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[7] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[8] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[9] 赵展,李景阳,董建新,姚志浩,张麦仓. 925镍铁基耐蚀合金均匀化及高温氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[10] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[11] 谢冬柏,单国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[12] 杨甜甜,徐敬军,钱余海,李美栓. 石墨基体上ZrC/MoSi2微叠层涂层的制备及抗超高温氧化性能[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[13] 黄嘉鹏,杨斌,汪航. 稀土 (Y,La,Ce) 复合添加对Ni-10Cr-5Al合金在1000 ℃下高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.
[14] 袁军涛, 王文, 朱圣龙, 王福会. Super 304H钢在700~900 ℃纯水蒸汽中的氧化行为[J]. 中国腐蚀与防护学报, 2014, 34(3): 218-224.
[15] 袁军涛, 吴细毛, 王文, 朱圣龙, 王福会. 晶粒尺寸对耐热钢在高温水蒸汽中的氧化行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 257-264.