Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (3): 218-224    DOI: 10.11902/1005.4537.2013.101
  本期目录 | 过刊浏览 |
Super 304H钢在700~900 ℃纯水蒸汽中的氧化行为
袁军涛, 王文, 朱圣龙(), 王福会
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Oxidation Behavior of Super 304H Steel in Steam at 700~900 ℃
YUAN Juntao, WANG Wen, ZHU Shenglong(), WANG Fuhui
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(3622 KB)   HTML
摘要: 

从氧化动力学、氧化膜相组成和微观结构方面,研究了两种表面状态的Super 304H钢在700~900 ℃纯水蒸汽中的氧化行为。结果表明:Super 304H钢的氧化动力学近似遵从抛物线规律,但是抛物线速率常数和氧化膜结构与氧化温度及试样表面状态密切相关。升高温度和抛光处理都显著增大了抛物线速率常数,促进了Fe氧化物瘤及其下方向内氧化区的生长。

关键词 耐热钢表面状态纯水蒸汽高温氧化    
Abstract

Oxidation of Super 304H steel after two different surface preparations was studied in steam of pure water at 700~900 ℃. The two preparations are grinding with emery paper down to 1000 grit and polishing with diamond paste down to 1 μm. Oxidation kinetics was measured continuously for 24 h by thermo gravimetric analyzer (TGA) connected with a steam generator. After oxidation, the surface and cross sectional morphology, the chemical composition and the phase constituent of all oxide scales were examined by means of scanning electron microscopy (SEM), X-ray energy dispersive analysis (EDS), and X-ray diffraction (XRD) respectively. The results showed that oxidation kinetics of Super 304H steel in steam followed an near-parabolic rate law, however, parabolic rate constants were significantly dependent on the exposure temperature and surface state. As a consequence of rising temperature or polishing the steel surface, the parabolic rate constants could remarkably be increased and the formation of iron oxide nodules as well as the internal oxidation beneath them could be facilitated for the oxidation of Super 304H steel in steam.

Key wordsheat-resistant steel    surface state    pure steam    high temperature oxidation
收稿日期: 2013-06-14     
ZTFLH:  TG172  
基金资助:国家自然科学基金项目 (51071163);国家重点基础研究计划项目 (2012CB625102) 资助
作者简介: null

袁军涛,男,1985年生,博士生,研究方向为高温腐蚀与防护

引用本文:

袁军涛, 王文, 朱圣龙, 王福会. Super 304H钢在700~900 ℃纯水蒸汽中的氧化行为[J]. 中国腐蚀与防护学报, 2014, 34(3): 218-224.
Juntao YUAN, Wen WANG, Shenglong ZHU, Fuhui WANG. Oxidation Behavior of Super 304H Steel in Steam at 700~900 ℃. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 218-224.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.101      或      https://www.jcscp.org/CN/Y2014/V34/I3/218

图1  
Temperature Polished specimen Ground specimen
kp / (mg2/cm4/h) t / h kp / (mg2/cm4/h) t / h
700 0.15 0~24 8.48×10-4 5~24
800 0.50 5~24 1.95×10-3 5~24
900 0.82 5~24 0.03
0.77
0~5
12.5~24
表1  Super 304H钢的抛物线速率常数
图2  
图3  
图4  
图5  
图6  
图7  
[1] Chi C Y, Yu H Y, Xie X S. Research and development of austenitic heat-resistant steels for 600 ℃ superheat/reheater tubes of USC power plant boilers[J]. World Iron Steel, 2012, 12(4): 50-65
[1] (迟成宇, 于鸿垚, 谢锡善. 600 ℃超超临界电站锅炉过热器及再热器管道用先进奥氏体耐热钢的研究和发展[J]. 世界钢铁, 2012, 12(4): 50-65)
[2] Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam[J]. Int. Mater. Rev., 2010, 55(3): 129-167
[3] Viswanathan R, Sarver J, Tanzosh J M. Boiler materials for ultra-supercritical coal power plants-steamside oxidation[J]. J. Mater. Eng. Perform., 2006, 15(3): 255-274
[4] Asteman H, Svensson J E, Johansson L G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor[J]. Oxid. Met., 1999, 52(1/2): 95-211
[5] Asteman H, Svensson J E, Norell M, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation[J]. Oxid. Met., 2000, 54(1/2): 11-26
[6] Asteman H, Svensson J E, Johansson L G. Evidence for chromium evaporation influencing the oxidation of 304L: The effect of temperature and flow rate[J]. Oxid. Met., 2002, 57(3/4): 193-216
[7] Halvarsson M, Tang J E, Asteman H, et al. Microstructural investigation of the breakdown of the protective oxide scale on 304 steel in the presence of oxygen and water vapour at 600 ℃[J]. Corros. Sci., 2006, 48(8): 2014-2035
[8] Peng X, Yan J, Zhou Y, et al. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air[J]. Acta Mater., 2005, 53(19): 5079-5088
[9] Asteman H, Svensson J E, Johansson L G. Oxidation of 310 steel in H2O/O2 mixtures at 600 ℃: the effect of water-vapor-enhanced chr-omium evaporation[J]. Corros. Sci., 2002, 44(11): 2635-2649
[10] Liu F, Tang J E, Asteman H, et al. Investigation of the evolution of the oxide scale formed on 310 stainless steel oxidized at 600 ℃ in oxygen with 40% water vapor using FIB and TEM[J]. Oxid. Met., 2009, 71(1/2): 77-105
[11] Yamauchi A, Kurokawa K, Takahashi H. Evaporation of Cr2O3 in atmospheres containing H2O[J]. Oxid. Met., 2003, 59(5/6): 517-527
[12] Opila E J, Jacobson N S, Myers D L, et al. Predicting oxide stability in high-temperature water vapor[J]. JOM, 2006, 58(1): 22-28
[13] Opila E J, Myers D L, Jacobson N S, et al. Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g) [J]. J. Phys. Chem., 2007, 111(10)A: 1971-1980
[14] Young D J, Pint B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor[J]. Oxid. Met., 2006, 66(3/4): 137-153
[15] Yuan J T, Wu X M, Wang W, et al. The effect of surface finish on the scaling behavior of stainless steel in steam and supercritical water[J]. Oxid. Met., 2013, 79(5/6): 541-551
[16] Yuan J T, Wu X M, Wang W, et al. Effects of grain size on oxidation of heat-resistant steels in high temperature water steam[J]. J. Chin. Soc. Corros. Prot., 2013, 33(4): 257-264
[16] (袁军涛, 吴细毛, 王文等. 晶粒尺寸对耐热钢在高温水蒸汽中的氧化行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 257-264)
[17] Hansson A N, Danielsen H, Grumsen F B, et al. Microstructural investigation of the oxide formed on TP 347H FG during long-term steam oxidation[J]. Mater. Corros., 2010, 61(8): 665-675
[18] Hansson A N, Pantleon K, Grumsen F B, et al. Microstructure evolution during steam oxidation of a Nb stabilized austenitic stainless steel[J]. Oxid. Met., 2010, 73(1/2): 289-309
[19] Li D S, Dai Q X, Wang G J, et al. High-temperature oxidation resistance of austenitic stainless steel Super 304H[J]. J. Jiangsu Univ.(Nat. Sci. Ed.), 2012, 33(5): 581-585
[19] (李冬升, 戴起勋, 王国建等. Super 304H奥氏体不锈钢的抗高温氧化性能[J]. 江苏大学学报 (自然科学版), 2012, 33(5): 581-585)
[20] Birks N,Meier G H,Pettit F S. Introduction to the High-temperature Oxidation of Metals (2nd Ed.)[M]. Cambridge: Cambridge University Press, 2006
[21] He Y D,Qi H B. Introduction to Corrosion and Protection of Materials[M]. Beijing: China Machine Press, 2005
[21] (何业东,齐慧滨. 材料腐蚀与防护概论[M]. 北京: 机械工业出版社, 2005)
[22] Nakai M, Nagai K, Murata Y, et al. Correlation of high-temperature steam oxidation with hydrogen dissolution in pure iron and ternary high-chromium ferritic steel[J]. ISIJ Int., 2005, 45(7): 1066-1072
[23] Auchi M, Hayashi S, Toyota K, et al. Effect of water vapor on the high-temperature oxidation of pure Ni[J]. Oxid. Met., 2012, 78(1/2): 51-61
[24] Essuman E, Meier G H, Zurek J, et al. Protective and non-protective scale formation of NiCr alloys in water vapor containing high-and low-PO2 gases[J]. Corros. Sci., 2008, 50(6): 1753-1760
[25] Jocob Y P, Haanappel V A C, Stroosnijder M F, et al. The effect of gas composition on the isothermal oxidation behavior of PM chromium[J]. Corros. Sci., 2002, 44(9): 2027-2039
[26] Hänsel M,Quadakkers W J,Young D J. Role of water vapor in chromia-scale growth at low oxygen partial pressure [J]. Oxid. Met., 2003, 59(3/4): 285-301
[27] Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys[J]. Oxid. Met., 2008, 69(3/4): 143-162
[28] Henry S, Mougin J, Wouters Y, et al. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres[J]. Mater. High Temp., 2000, 17(2): 231-235
[29] Li X G, He J W. Observation of the effect of shot blasted on steam oxidation resistance of TP304H steel boiler tubing[J]. J. Chin. Soc. Corros. Prot., 2003, 23(3): 171-174
[29] (李幸庚, 何家文. 喷丸处理提高TP304H耐热钢锅炉管抗水蒸汽氧化性能应用效果的观察[J]. 中国腐蚀与防护学报, 2003, 23(3): 171-174)
[30] Yue Z W, Fu M, Li X G, et al. Effect of shot peening treatment on steam oxidation resistance of TP304H reheater tube[J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 137-140
[30] (岳增武, 傅敏, 李辛庚等. 内壁喷丸处理对TP304H耐热钢锅炉管抗水蒸汽氧化性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(2): 137-140)
[31] Huang Z, Peng X, Xu C, et al. Effect of alloy nanocrystallization and Cr distribution on the development of a chromia scale[J]. J. Electrochem. Soc., 2009, 156(3): C95-C102
[1] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[2] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[3] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[4] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[5] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[6] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[7] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[8] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响I:界面结合性能分析[J]. 中国腐蚀与防护学报, 2018, 38(2): 124-132.
[9] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[10] 赵展,李景阳,董建新,姚志浩,张麦仓. 925镍铁基耐蚀合金均匀化及高温氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[11] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[12] 谢冬柏,单国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[13] 杨甜甜,徐敬军,钱余海,李美栓. 石墨基体上ZrC/MoSi2微叠层涂层的制备及抗超高温氧化性能[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[14] 黄嘉鹏,杨斌,汪航. 稀土 (Y,La,Ce) 复合添加对Ni-10Cr-5Al合金在1000 ℃下高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.
[15] 袁军涛, 吴细毛, 王文, 朱圣龙, 王福会. 晶粒尺寸对耐热钢在高温水蒸汽中的氧化行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 257-264.