Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 856-860    DOI: 10.11902/1005.4537.2021.280
  海洋材料腐蚀与防护专栏 本期目录 | 过刊浏览 |
耐候钢表面稳定化处理及锈层结构研究
石践(), 胡学文, 何博, 杨峥, 汪飞, 郭锐
马鞍山钢铁股份有限公司技术中心 马鞍山 243000
Surface Stabilization and Rust Structure of Weathering Steel
SHI Jian(), HU Xuewen, HE Bo, YANG Zheng, WANG Fei, GUO Rui
Technology Center of Masteel, Ma'anshan Iron and Steel Co. Ltd., Ma'anshan 243000, China
全文: PDF(10521 KB)   HTML
摘要: 

针对免涂装耐候钢使用过程中暴露出的锈液流挂问题,设计了一种耐候钢锈层稳定化处理液,并对稳定化处理后的耐候钢进行了半年的大气暴晒实验。分析了耐候钢稳定锈层形成过程中,锈层的结构及演化行为。腐蚀动力学曲线结果表明:耐候钢表面锈层经过4个阶段逐渐达到稳定状态,每个阶段的增 (失) 重均呈线性变化。锈层中Cu、Cr富集提高了锈层电化学保护性能,缩短了稳定化进程。

关键词 锈层稳定化耐候钢富集    
Abstract

Aiming at the problem of emerging traces of fluid flow containing rust products on the surface of the bare weathering steel during real service in atmosphere, a stabilizing treatment solution for the weathering steel was designed, and after stabilization treatment, the weathering steel was exposed in a real atmosphere for 0.5 a. The evolution process of the forming rust layer on the weathering steel was monitored and characterized. The corrosion kinetic curve shows that the weight variation of weathering steel gradually reaches a stable state through four stages, and the mass gain (loss) of each stage changes linearly. The enrichment of Cu and Cr in the rust increases the electrochemical protectiveness of the rust layer, reduces the corrosion rate and shortens the stabilization process of the bare weathering steel.

Key wordssurface rust stabilizer    weathering steel    enrichment
收稿日期: 2021-10-11     
ZTFLH:  TG172  
通讯作者: 石践     E-mail: stoneshi810@163.com
Corresponding author: SHI Jian     E-mail: stoneshi810@163.com
作者简介: 石践,男,1991年生,硕士,工程师

引用本文:

石践, 胡学文, 何博, 杨峥, 汪飞, 郭锐. 耐候钢表面稳定化处理及锈层结构研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 856-860.
Jian SHI, Xuewen HU, Bo HE, Zheng YANG, Fei WANG, Rui GUO. Surface Stabilization and Rust Structure of Weathering Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 856-860.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.280      或      https://www.jcscp.org/CN/Y2022/V42/I5/856

图1  耐候钢腐蚀增重、增重速率动力学曲线及耐候钢腐蚀失重率
PhaseFitting equationabR2
Firsty=-1.71+3.71x-1.713.711
Secondy=21.63+1.20x21.631.200.989
Thirdy=42.53+0.20x42.530.200.941
Lasty=60.74-0.21x60.74-0.210.991
表1  耐候钢腐蚀增重动力学曲线拟合结果
图2  耐候钢暴晒不同时间的腐蚀形貌
图3  试样表面腐蚀形貌的SEM图像
图4  耐候钢的动电位极化曲线
T / dEcorr / VIcorr / μA·cm-2
9-0.4131.53
30-0.2715.78
90-0.145.24
180-0.121.47
表2  极化曲线拟合结果
图5  耐候钢暴晒不同时间截面腐蚀SEM图像
图6  耐候钢截面锈层元素分布 (180 d)
1 Yadav A P, Nishikata A, Tsuru T. Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions-influence of time of wetness [J]. Corros. Sci., 2004, 46: 169
doi: 10.1016/S0010-938X(03)00130-6
2 Liu T, Wang S M, Zhao X J. Stabilization treatment and formation of rust layer on weathering steel [J]. China Surf. Eng., 2019, 32(6): 98
2 刘涛, 王胜民, 赵晓军. 耐候钢锈层的稳定化处理及锈层形成 [J]. 中国表面工程, 2019, 32(6): 98
3 Hara S, Kamimura T, Miyuki H, et al. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge [J]. Corros. Sci., 2007, 49: 1131
doi: 10.1016/j.corsci.2006.06.016
4 Liang C F, Hou W T. The effect of alloying in carbon steels and low alloy steels on their atmospheric corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 1997, 17: 87
4 梁彩凤, 侯文泰. 合金元素对碳钢和低合金钢在大气中耐腐蚀性的影响 [J]. 中国腐蚀与防护学报, 1997, 17: 87
5 Cano H, Neff D, Morcillo M, et al. Characterization of corrosion products formed on Ni 2.4wt%-Cu 0.5wt%-Cr 0.5wt% weathering steel exposed in marine atmospheres [J]. Corros. Sci., 2014, 87: 438
doi: 10.1016/j.corsci.2014.07.011
6 Chen X H, Dong J H, Han E-H, et al. Effect of Ni on the ion-selectivity of rust layer on low alloy steel [J]. Mater. Lett., 2007, 61: 4050
doi: 10.1016/j.matlet.2007.01.014
7 Zhong B, Xu X L, Chen Y Q, et al. Electrochemical impedance spectrum for corrosion of a weathering steel 09CuPCrNi-A in 3.5% NaCl solution [J]. Corros. Sci. Prot. Technol., 2011, 23: 437
7 钟彬, 徐小连, 陈义庆 等. 09CuPCrNi-A耐大气腐蚀钢电化学阻抗研究 [J]. 腐蚀科学与防护技术, 2011, 23: 437
8 Shi Z J, Wang L, Chen N, et al. Research status and development on surface rust layer and stabilizing treatment of weathering steels [J]. Corros. Sci. Prot. Technol., 2015, 27: 503
8 石振家, 王雷, 陈楠 等. 耐候钢表面锈层及其稳定化处理现状与发展趋势 [J]. 腐蚀科学与防护技术, 2015, 27: 503
9 Liu G C, Dong J H, Han E-H, et al. Progress in research on rust layer of weathering steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 268
9 刘国超, 董俊华, 韩恩厚 等. 耐候钢锈层研究进展 [J]. 腐蚀科学与防护技术, 2006, 18: 268
10 Gao L J, Yang J W, Yu D Y, et al. A new rust stabilization treatment of weathering steel and its periodic immersed corrosion resistance in 3.5%NaCl solution [J]. Surf. Technol., 2017, 46(8): 234
10 高立军, 杨建炜, 于东云 等. 耐候钢新型表面锈层稳定剂处理及其耐3.5%NaCl溶液周浸腐蚀性能 [J]. 表面技术, 2017, 46(8): 234
11 Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690MPa grade high strength Bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
11 刘海霞, 黄峰, 袁玮 等. 690MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
12 Ishikawa T, Minamigawa M, Kandori K, et al. Influence of metal ions on the transformation of γ-FeOOH into α-FeOOH [J]. J. Electrochem. Soc., 2004, 151: B512
doi: 10.1149/1.1778167
13 Choi Y S, Shim J J, Kim J G. Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water [J]. J. Alloy. Compd., 2005, 391: 162
doi: 10.1016/j.jallcom.2004.07.081
14 Misawa T, Kyuno T, Suëtaka W, et al. The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels [J]. Corros. Sci., 1971, 11: 35
doi: 10.1016/S0010-938X(71)80072-0
15 Hao X C, Xiao K, Zhang H Q, et al. Influence of alloying elements Cu and Cr on the corrosion resistance of weathering steels in simulated ocean atmospheric environment [J]. Mater. Prot., 2009, 42(1): 21
15 郝献超, 肖葵, 张汉青 等. 模拟海洋大气环境下Cu和Cr对耐候钢耐腐蚀性能的影响 [J]. 材料保护, 2009, 42(1): 21
16 Hao X H, Dong J H, Wei J, et al. Effect of Cu on corrosion behavior of low alloy steel under the simulated bottom plate environment of cargo oil tank [J]. Corros. Sci., 2017, 121: 84
doi: 10.1016/j.corsci.2017.03.012
17 Shi J, Hu X W, He B, et al. Sulfuric acid corrosion resistance of Q345NS steel welded joint [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 565
17 石践, 胡学文, 何博 等. Q345NS钢焊接接头耐硫酸腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 565
18 Li M S, Xin L, Qian Y H, et al. A review on studies of internal stress in oxide scales [J]. Corros. Sci. Prot. Technol., 1999, 11: 300
18 李美栓, 辛丽, 钱余海 等. 氧化膜应力研究进展 [J]. 腐蚀科学与防护技术, 1999, 11: 300
[1] 范益, 杨文秀, 王军, 蔡佳兴, 马宏驰. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[2] 石践, 胡学文, 张道刘, 曹卉丹, 何博, 浦红, 郭锐, 汪飞. 显微组织对高强耐候钢腐蚀性能的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[3] 王越, 刘子利, 刘希琴, 章守东, 田青超. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(1): 39-46.
[4] 张飘飘,杨忠民,陈颖,王慧敏. 含铬耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 93-100.
[5] 吴军, 王秀静, 罗睿, 张三平, 周建龙. 环境变迁对Q235和09CuPCrNi-A钢早期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(5): 465-471.
[6] 张勇,覃作祥,许鸿吉,常凯,陆兴,佟维. 经济型铁素体不锈钢与耐候钢异种金属接头的耐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(2): 115-122.
[7] 王博,卢凯,王建景,姜茂发,王德永,刘承军. 模拟工业大气条件下高锰耐候钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 333-336.
[8] 王雷, 董俊华, 柯伟. 加载与循环干湿条件作用下对MnCu耐候钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 257-261.
[9] 李巧霞 王振尧 韩薇 韩恩厚. 碳钢和耐候钢的大气腐蚀[J]. 中国腐蚀与防护学报, 2009, 29(5): 394-400.
[10] 杨景红; 刘清友; 王向东; 孙冬柏; 李向阳 . 耐大气腐蚀钢及其腐蚀产物的研究概况[J]. 中国腐蚀与防护学报, 2007, 27(6): 367-372 .
[11] 李巧霞; 王振尧; 韩薇; 韩恩厚 . 耐候钢在含MgCl2介质的干/湿环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2006, 26(3): 136-410 .
[12] 林翠; 李晓刚; 刘晓东 . 碳钢和耐侯钢在北京城市大气环境中初期腐蚀行为[J]. 中国腐蚀与防护学报, 2005, 25(4): 193-199 .
[13] 黄春波; 吕战鹏; 杨武 . 改性800M合金在热浓碱溶液中生成的表面膜的AES研究[J]. 中国腐蚀与防护学报, 2003, 23(5): 266-270 .
[14] 张全成; 吴建生; 陈家光 . 暴露1年的耐大气腐蚀用钢表面锈层分析[J]. 中国腐蚀与防护学报, 2001, 21(5): 297-300 .
[15] 梁彩凤; 侯文泰; 陈邦文 . 一种新型经济耐候钢的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2000, 20(3): 135-141 .