Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 826-832    DOI: 10.11902/1005.4537.2021.258
  海洋材料腐蚀与防护专栏 本期目录 | 过刊浏览 |
Q690贝氏体桥梁钢焊接接头在模拟乡村大气中耐蚀性能研究
王昕煜, 黄峰(), 刘海霞, 袁玮, 刘静
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 湖北省海洋工程材料及服役安全工程技术研究中心武汉 430081
Corrosion Resistance of Welded Joints of Q690 Bainite Bridge Steel in Simulated Rural Atmosphere
WANG Xinyu, HUANG Feng(), LIU Haixia, YUAN Wei, LIU Jing
Hubei Engineering Technology Research Center of Marine Materials and Service Safety, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(10570 KB)   HTML
摘要: 

采用干、湿周期浸润法、电化学方法,结合X射线衍射仪 (XRD)、场发射原子探针显微镜 (FE-EPMA) 等现代表面分析技术,研究了Q690贝氏体桥梁钢及其焊接接头在模拟乡村大气环境中的腐蚀动力学规律及机理。结果表明,在整个腐蚀周期内,Q690钢及其焊接接头腐蚀动力学过程可以分为两个阶段,即n>1的加速腐蚀阶段和n<1的减速腐蚀阶段。腐蚀前期,因Q690钢焊接接头母材、热影响区和焊缝区存在明显显微组织差异,形成了以焊缝、热影响区为阳极、母材为阴极的电偶腐蚀对,导致其耐蚀性比母材要差;腐蚀后期,稳定锈层的形成缩小了Q690钢及焊接接头之间的耐蚀性差异。

关键词 690MPa级贝氏体钢焊接接头乡村大气周期浸润腐蚀极化曲线    
Abstract

The corrosion behavior of Q690 bainitic bridge steel and its welded joints in a simulated rural atmospheric environment were studied via cyclically wetting and drying method, electrochemical testing, X-ray diffraction (XRD), field emission electron probe micro analysis (FE-EPMA) and other modern surface analysis techniques. The results showed that the corrosion processes of Q690 steel and its welded joint may be differentiated as two stages, namely, the accelerated corrosion stage with n>1 and the deceleration corrosion stage with n<1. In the early stage of corrosion, owing to the obvious microstructure differences among BM (base metal), HAZ (heat affected zone) and WZ (weld zone) of Q690 steel welded joint, galvanic corrosion could emerge, i.e., WZ and HAZ act as anode and BM as cathode, resulting in worse corrosion resistance of the former two, in the contrast to BM. In the later stage of corrosion, as the stable rust layer formed, the difference in corrosion resistance between Q690 steel and welded joints was reduced.

Key words690 MPa grade bainite steel    welded joints    rural atmosphere    periodic infiltrationcorrosion    polarization curve
收稿日期: 2021-09-24     
ZTFLH:  TG174  
基金资助:湖北省自然科学基金创新群体(2021CFA023)
通讯作者: 黄峰     E-mail: huangfeng@wust.edu.cn
Corresponding author: HUANG Feng     E-mail: huangfeng@wust.edu.cn
作者简介: 王昕煜,男,1998年生,硕士生

引用本文:

王昕煜, 黄峰, 刘海霞, 袁玮, 刘静. Q690贝氏体桥梁钢焊接接头在模拟乡村大气中耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 826-832.
Xinyu WANG, Feng HUANG, Haixia LIU, Wei YUAN, Jing LIU. Corrosion Resistance of Welded Joints of Q690 Bainite Bridge Steel in Simulated Rural Atmosphere. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 826-832.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.258      或      https://www.jcscp.org/CN/Y2022/V42/I5/826

图1  焊接接头截面示意图
图2  Q690焊接接头各区域显微组织
图3  Q690钢及其焊接接头平均腐蚀速率随时间变化
图4  在不同周浸时间后Q690钢及其焊接接头试样表面宏观形貌
图5  Q690钢及焊接接头768 h锈层截面形貌及元素分布
图6  Q690钢及焊接接头周浸768 h后腐蚀产物XRD图谱
图7  Q690焊接接头不同区域开路电位随时间变化
图8  Q690焊接接头动电位极化曲线
SampleIcorr / A·cm-2Ecorr / V
BM4.7207×10-7-0.25115
HAZ4.7596×10-7-0.29750
WM9.7629×10-7-0.43014
表1  动电位极化参数表
图9  Q690焊接接头线性极化曲线
图10  Q690焊接接头各区域电化学阻抗谱及等效电路
图11  Q690钢及焊接接头腐蚀深度-时间双对数曲线
1 Hou Z G, Chen L Y, Wang J J, et al. Microstructure and mechanical properties of 05CuPCrNi weathering steel welded joint with solid wire and flux-cored wire [J]. Weld. Technol., 2021, 50(5): 95
1 侯振国, 陈丽园, 王金金 等. 实心和药芯焊丝05CuPCrNi耐候钢焊接接头的组织和力学性能 [J]. 焊接技术, 2021, 50(5): 95
2 Wang Y X, Tsutsumi S, Kawakubo T, et al. Microstructure and mechanical properties of weathering mild steel joined by friction stir welding [J]. Mater. Sci. Eng., 2021, 823A: 141715
3 Gong L H, Xing Q, Wang H H. Corrosion behaviors of weathering steel 09CuPCrNi welded joints in simulated marine atmospheric environment [J]. Anti-Corros. Methods Mater., 2016, 63: 295
doi: 10.1108/ACMM-10-2014-1443
4 Chao Y L, Zhou Y L, Wang Q L, et al. Corrosion performance of welded joint and base steel of Cu-P-Cr weathering steel by cyclic immersion in NaHSO3 solution [J]. Trans. Mater. Heat Treat., 2015, 36(2): 84
4 晁月林, 周玉丽, 王全礼 等. Cu-P-Cr钢及其焊接接头的周期腐蚀性能 [J]. 材料热处理学报, 2015, 36(2): 84
5 Wang J, Feng C, Peng B C, et al. Corrosion behavior of weld joint of S450EW steel in NaHSO3 solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 575
5 王军, 冯超, 彭碧草 等. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 575
6 Liu P, Han S G, Yi Y Y, et al. Corrosion behavior of welded joint of Q690 with CMT twin [J]. Int. J. Corros., 2018, 2018: 2368717
7 Zhuo X, Li L X, An T B, et al. Study on corrosion behavior of Q420qFNH weathering bridge steel welded joint [J]. Hot Work. Technol., 2021, 50(15): 20
7 卓晓, 李立新, 安同邦 等. Q420qFNH耐候桥梁钢焊接接头的腐蚀行为研究 [J]. 热加工工艺, 2021, 50(15): 20
8 Zhang T Y, Liu W, Chowwanonthapunya T, et al. Corrosion evolution and analysis of welded joints of structural steel performed in a tropical marine atmospheric environment [J]. J. Mater. Eng. Perf., 2020, 29: 5057
doi: 10.1007/s11665-020-05045-9
9 Huang C, Huang F, Liu H X, et al. The galvanic effect of high-strength weathering steel welded joints and its influence on corrosion resistance [J]. Corros. Eng. Sci. Technol., 2019, 54: 556
doi: 10.1080/1478422X.2019.1636484
10 Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
10 刘海霞, 黄峰, 袁玮 等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
11 Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
12 State Administration of Market Supervision and Administration of the People's Republic of China, Administration Standardization. Corrosion of metals and alloys—Alternate immersion test in salt solution [S]. Beijing: Standards Press of China, 2018
12 国家市场监督管理总局, 中国国家标准化管理委员会. 金属和合金的腐蚀 盐溶液周浸试验 [S]. 北京: 中国标准出版社, 2018
13 Liu T, Wang S M, Zhao X J. Stabilization treatment and formation of rust layer on weathering steel [J]. China Surf. Eng., 2019, 32(6): 98
13 刘涛, 王胜民, 赵晓军. 耐候钢锈层的稳定化处理及锈层形成 [J]. 中国表面工程, 2019, 32(6): 98
14 Wang Z Y, Yu Q C, Chen J J, et al. Atmospheric corrosion behavior of P265GH steel and Q235 steel under dry/humid/immersion alternative condition [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 53
14 王振尧, 于全成, 陈军君 等. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为 [J]. 中国腐蚀与防护学报, 2014, 34: 53
15 Zhu J Y, Xu L N, Feng Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel [J]. Corros. Sci., 2016, 111: 391
doi: 10.1016/j.corsci.2016.05.032
16 Zhou L J, Dong Y, Yang S W. Corrosion behavior of submerged arc welded joint of E550 steel in simulated marine atmospheric environment [J]. Trans. Mater. Heat Treat., 2020, 41(4): 173
16 周鲁军, 董毅, 杨善武. E550钢埋弧焊接接头在模拟海洋大气环境中的腐蚀行为 [J]. 材料热处理学报, 2020, 41(4): 173
17 Hu J Y, Cao S A, Xie J L. Effect of rust layer on the corrosion behavior of carbon steel in reverse osmosis product water [J]. Acta Phys.-Chim. Sin., 2012, 28: 1153
doi: 10.3866/PKU.WHXB201203022
17 胡家元, 曹顺安, 谢建丽. 锈层对海水淡化一级反渗透产水中碳钢腐蚀行为的影响 [J]. 物理化学学报, 2012, 28: 1153
18 Ma Y T, Li Y, Wang F H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment [J]. Corros. Sci., 2010, 52: 1796
doi: 10.1016/j.corsci.2010.01.022
19 Huang F, Zhu T W, Zhou X J, et al. Indoor accelerated corrosion kinetics of weathering steel and its service life prediction [J]. Corrosion, 2014, 70: 819
doi: 10.5006/1196
20 Wang Z H, Zhang X, Cheng L, et al. Role of inclusion and microstructure on corrosion initiation and propagation of weathering steels in marine environment [J]. J. Mater. Res. Technol., 2021, 10: 306
doi: 10.1016/j.jmrt.2020.11.096
21 Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
[1] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[2] 范益, 杨文秀, 王军, 蔡佳兴, 马宏驰. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[3] 魏欢欢, 雷天奇, 郑东东, 辛振科. Q690高强钢对接焊缝加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 675-680.
[4] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[5] 程鹏, 刘静, 黄峰, 黄先球, 庞涛. 690 MPa级耐候桥梁钢在模拟工业大气环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 563-572.
[6] 梁泰贺, 朱雪梅, 张振卫, 王新建, 张彦生. 铝硅复合对Fe32Mn7Cr3Al2Si钢氧化改性层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[7] 李旭嘉, 惠红海, 赵君文, 巫国强, 戴光泽. 多壁碳纳米管含量对无铬锌铝涂层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[8] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[9] 王永祥, 何柏林, 李力. 超声冲击改善P355NL1钢焊接接头腐蚀疲劳性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
[10] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[11] 石践, 胡学文, 何博, 杨峥, 郭锐, 汪飞. Q345NS钢焊接接头耐硫酸腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[12] 孙晓光, 王子晗, 徐学旭, 韩晓辉, 李刚卿, 刘智勇. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[13] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[14] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[15] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.