Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 563-572    DOI: 10.11902/1005.4537.2021.143
  研究报告 本期目录 | 过刊浏览 |
690 MPa级耐候桥梁钢在模拟工业大气环境下的腐蚀行为研究
程鹏1,2, 刘静1(), 黄峰1, 黄先球2, 庞涛2
1.武汉科技大学 省部共建耐火材料与冶金国家重点实验室/湖北省海洋工程材料及 服役安全工程技术研究中心 武汉 430081
2.宝钢股份中央研究院 武汉 430081
Corrosion Behavior of 690 MPa Weathering Bridge Steel in Simulated Industrial Atmosphere
CHENG Peng1,2, LIU Jing1(), HUANG Feng1, HUANG Xianqiu2, PANG Tao2
1.Hubei Engineering Technology Research Center of Marine Materials and Service Safety, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.Central Research Institute, BaoShan Iron&Steel Co. Ltd., Wuhan 430081, China
全文: PDF(18330 KB)   HTML
摘要: 

采用周期浸润加速腐蚀实验和电化学方法,结合场发射扫描电镜 (FE-SEM)、X射线衍射 (XRD)、电子探针 (EPMA) 等表面测试技术研究了690 MPa高性能耐候桥梁钢在模拟工业大气环境中的腐蚀行为。结果表明,在腐蚀初期,以贝氏体为主的Q690qENH钢的耐蚀性优于含有铁素体和珠光体组织的Q235钢;在腐蚀后期,Q690qENH钢腐蚀速率逐渐减小且远低于Q235钢,Q690qENH钢锈层中Cu、Cr、Ni合金元素的富集提高了锈层的致密性和稳定性,对腐蚀性介质的抵抗作用更强,锈层保护性参数α/γ*更大。电化学结果也表明,Q690qENH钢的锈层电阻及线性极化电阻更大,保护作用更强,因此在模拟工业大气环境中耐蚀性明显优于Q235钢。

关键词 690MPa级桥梁钢耐候性工业大气环境    
Abstract

The corrosion behavior of 690 MPa high performance weathering bridge steel in a laboratory simulated industrial atmosphere was investigated by means of cyclically alternative immersion-drying accelerated corrosion test, electrochemical test, scanning electron microscopy (SEM), X-ray diffractometer (XRD), electron probe (EPMA) and other surface testing techniques. The results show that the corrosion resistance of Q690qENH steel composed mainly of bainite is better than that of Q235 steel composed of ferrite and pearlite at the early stage of corrosion. At the later stage of corrosion, the corrosion rate of Q690qENH steel decreases gradually and which is much lower than that of Q235 steel. The enrichment of alloying elements Cu, Cr and Ni in the rust layer of Q690qENH steel improves the denseness and stability of the rust layer, which has stronger resistance to corrosive medium, and higher α/γ* ratio of the so-called rust layer protectiveness. The electrochemical test results also show that the rust resistance and linear polarization resistance of Q690qENH steel are larger and the protective effect is stronger. Therefore, the corrosion resistance of Q690qENH steel is obviously better than that of Q235 steel in simulated industrial atmospheric environment.

Key words690 MPa bridge steel    weathering resistance    industrial atmospheric
收稿日期: 2021-06-23     
ZTFLH:  TG174  
基金资助:国家重点研发计划(2017YFB030480)
通讯作者: 刘静     E-mail: liujing@wust.edu.cn
Corresponding author: LIU Jing     E-mail: liujing@wust.edu.cn
作者简介: 程鹏,男,1986年生,硕士,高级工程师

引用本文:

程鹏, 刘静, 黄峰, 黄先球, 庞涛. 690 MPa级耐候桥梁钢在模拟工业大气环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 563-572.
Peng CHENG, Jing LIU, Feng HUANG, Xianqiu HUANG, Tao PANG. Corrosion Behavior of 690 MPa Weathering Bridge Steel in Simulated Industrial Atmosphere. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 563-572.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.143      或      https://www.jcscp.org/CN/Y2022/V42/I4/563

SampleCSiMnPSCuCrNi
Q690qENH<0.100.111.530.008<0.0050.3~0.40.4~0.60.5~0.7
Q2350.130.230.630.013<0.0050.040.020.02
表1  实验钢的化学成分 (mass fraction / %)
图1  Q690qENH钢和Q235钢的显微组织
图2  实验钢腐蚀失重和腐蚀速率随时间的变化曲线
图3  周浸腐蚀不同时间后的实验钢表面宏观形貌
图4  周浸腐蚀不同时间后的实验钢表面锈层微观形貌
图5  周浸腐蚀不同时间后的实验钢截面锈层微观形貌
图6  Q235钢和Q690qENH钢腐蚀384 h形成的锈层的截面形貌及元素分布图
图7  Q235钢和Q690qENH钢腐蚀不同时间后表面的XRD图谱
Time / hQ235Q690qENH
960.311.88
1920.962.07
3841.443.44
表2  不同腐蚀时间后的XRD半定量分析
图8  Q235钢和Q690qENH钢在模拟工业大气环境下表面的SVET图
图9  Q235钢和Q690qENH钢腐蚀不同时间后的电化学阻抗谱图及其等效电路图
Time / hSampleRrRctRr+Rct
96Q235156.8307463.8
Q690qENH165.3348.4513.7
192Q235158.5360.2518.7
Q690qENH178.6393.1571.7
384Q235172.8365537.8
Q690qENH190.4395.1585.5
表3  经不同时间腐蚀的试样EIS拟合参数
图10  两种钢经不同时间腐蚀后的|Z|0.01 Hz值
图11  Q235钢和Q690qENH钢腐蚀不同时间后的线性极化图和极化电阻值
SampleWR2
Q235W=1.652t0.600.9969
Q690qENHW=1.330t0.550.9929
表4  两种钢腐蚀动力学拟合结果
1 Zheng K F, Zhang Y, Heng J L, et al. High strength weathering steel and its application and prospect in bridge engineering [J]. J. Harbin Inst. Technol., 2020, 52(3): 1
1 郑凯锋, 张宇, 衡俊霖 等. 高强度耐候钢及其在桥梁中的应用与前景 [J]. 哈尔滨工业大学学报, 2020, 52(3): 1
2 Tian Z Q, Sun L, Liu J L, et al. Development status of weathering bridge steel at home and abroad [J]. Hebei Metall., 2019, (2): 11
2 田志强, 孙力, 刘建磊 等. 国内外耐候桥梁钢的发展现状 [J]. 河北冶金, 2019, (2): 11
3 Wang C S, Zhang J W, Duan L, et al. Research progress and engineering application of long lasting high performance weathering steel bridges [J]. J. Traffic Transp. Eng., 2020, 20(1): 1
3 王春生, 张静雯, 段兰 等. 长寿命高性能耐候钢桥研究进展与工程应用 [J]. 交通运输工程学报, 2020, 20(1): 1
4 Zhu J S, Guo X Y, Kang J F, et al. Research on corrosion behavior, mechanical property, and application of weathering steel in bridges [J]. China J. Highw. Transp., 2019, 32(5): 1
4 朱劲松, 郭晓宇, 亢景付 等. 耐候桥梁钢腐蚀力学行为研究及其应用进展 [J]. 中国公路学报, 2019, 32(5): 1
doi: 10.19721/j.cnki.1001-7372.2019.05.001
5 Morcillo M, Díaz I, Chico B, et al. Weathering steels: from empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
doi: 10.1016/j.corsci.2014.03.006
6 Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
6 郭明晓, 潘晨, 王振尧 等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
7 Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 319
7 郭铁明, 张延文, 秦俊山 等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 319
8 Zhang Y, Liu J, Huang F, et al. Comparative study of corrosion resistance of three weathering steels for bridges in simulated marine atmospheric environment [J]. J. Wuhan Univ. Sci. Technol., 2018, 41: 401
8 张宇, 刘静, 黄峰 等. 三种桥梁耐候钢在模拟海洋大气环境中的耐蚀性能比较 [J]. 武汉科技大学学报, 2018, 41: 401
9 Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength Bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
9 刘海霞, 黄峰, 袁玮 等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
10 Sun Y W, Zhong Y P, Wang L S, et al. Corrosion behavior of low-alloy high strength steels in a simulated common SO2-containing atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 274
10 孙永伟, 钟玉平, 王灵水 等. 低合金高强度钢的耐模拟工业大气腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 274
11 Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles [J]. Corros. Sci., 2014, 82: 165
doi: 10.1016/j.corsci.2014.01.016
12 Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
doi: 10.1016/0010-938X(94)90158-9
13 Huang T, Chen X P, Wang X D, et al. A study on the rust characteristics and corrosion resistance of high strength weathering steels in NaCl solution [J]. J. Mech. Eng., 2017, 53(20): 45
13 黄涛, 陈小平, 王向东 等. 高强耐候钢在NaCl溶液中的腐蚀锈层特征和耐腐蚀性研究 [J]. 机械工程学报, 2017, 53(20): 45
14 Nishimura T, Kodama T. Clarification of chemical state for alloying elements in iron rust using a binary-phase potential-pH diagram and physical analyses [J]. Corros. Sci., 2003, 45: 1073
doi: 10.1016/S0010-938X(02)00186-5
15 Long H, Zhang S X, Dong J H, et al. A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion [J]. Corros. Sci., 2012, 54: 244
doi: 10.1016/j.corsci.2011.09.023
16 De La Fuente D, Alcántara J, Chico B, et al. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques [J]. Corros. Sci., 2016, 110: 253
doi: 10.1016/j.corsci.2016.04.034
17 Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corros. Sci., 2006, 48: 2799
doi: 10.1016/j.corsci.2005.10.004
18 Tanaka H, Mishima R, Hatanaka N, et al. Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media [J]. Corros. Sci., 2014, 78: 384
doi: 10.1016/j.corsci.2013.08.023
19 Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
19 李子运, 王贵, 罗思维 等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 463
20 Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
doi: 10.1016/j.electacta.2012.01.025
21 Gui J, Devine T M. The influence of sulfate ions on the surface enhanced Raman spectra of passive films formed on iron [J]. Corros. Sci., 1994, 36: 441
doi: 10.1016/0010-938X(94)90036-1
22 Cao X K, Huang F, Huang C, et al. Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection [J]. Corros. Sci., 2019, 159: 108120
doi: 10.1016/j.corsci.2019.108120
23 Nishikata A, Zhu Q J, Tada E. Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method [J]. Corros. Sci., 2014, 87: 80
doi: 10.1016/j.corsci.2014.06.007
24 Xiao K, Dong C F, Li X G, et al. Atmospheric corrosion behavior of weathering steels in initial stage [J]. J. Iron Steel Res., 2008, 20(10): 53
24 肖葵, 董超芳, 李晓刚 等. 大气腐蚀下耐候钢的初期行为规律 [J]. 钢铁研究学报, 2008, 20(10): 53
25 Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metal. Sin., 2010, 46: 1365
25 柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365
doi: 10.3724/SP.J.1037.2010.00489
26 Zou Y, Wang J, Zheng Y Y. Electrochemical techniques for determining corrosion rate of rusted steel in seawater [J]. Corros. Sci., 2011, 53: 208
doi: 10.1016/j.corsci.2010.09.011
27 Luo R, Wu J, Liu X L, et al. Evolution of rust layers formed on Q235 and 09CuPCrNi-a steels during initial stage of field exposure in two sites of different environment [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 566
27 罗睿, 吴军, 柳鑫龙 等. Q235和09CuPCrNi-A钢在两种不同大气环境中腐蚀早期锈层演化研究 [J]. 中国腐蚀与防护学报, 2014, 34: 566
28 Li Q X, Wang Z Y, Han W, et al. Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere [J]. Corros. Sci., 2008, 50: 365
doi: 10.1016/j.corsci.2007.06.020
29 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
30 Chao Y L, Zhou Y L, Di Q K, et al. Effect of micro-alloying elements on corrosion resistance of low carbon steels [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 70
30 晁月林, 周玉丽, 邸全康 等. Cu, P, Cr和Ni对低碳钢耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 70
31 Zhang T Y, Liu W, Fan Y M, et al. Effect of synergistic action of Cu/Ni on corrosion resistance of low alloy steel in a simulated tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 511
31 张天翼, 柳伟, 范玥铭 等. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响 [J]. 中国腐蚀与防护学报, 2019, 39: 511
32 Nishimura T, Katayama H, Noda K, et al. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments [J]. Corros. Sci., 2000, 42: 1611
doi: 10.1016/S0010-938X(00)00018-4
[1] 范益, 杨文秀, 王军, 蔡佳兴, 马宏驰. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[2] 魏欢欢, 雷天奇, 郑东东, 辛振科. Q690高强钢对接焊缝加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 675-680.
[3] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[4] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[6] 汪家梅,陆辉,段振刚,张乐福,孟凡江,徐雪莲. 模拟压水堆二回路水环境中温度对690合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[7] 刘晓强,徐雪莲,谭季波,王媛,吴欣强,郑宇礼,孟凡江,韩恩厚. 反应堆冷却剂环境对690合金传热管疲劳性能影响研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[8] 海正银, 王辉, 辛长胜, 蔡敏, 秦博, 陈童. 加锌对690合金在高温水中形成的氧化膜的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 532-536.
[9] 孟凡江, 王俭秋, 韩恩厚, 柯伟. 划伤690TT合金在高温含氧水中应力腐蚀裂纹萌生的研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 413-418.
[10] 孙荣鹏 王俭秋 韩恩厚. 乙醇胺ETA浓度对核电站二回路碳钢和镍基合金690腐蚀的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 97-103.
[11] 冯万里,张乐福,马明娟. 轧制变形对690合金特殊晶界比例及耐晶间腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[12] 乔岩欣,任爱,刘飞华. 690合金在NaCl溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 146-150.
[13] 刘丽红,闫杰. 氨基磁漆涂层工艺在海洋大气环境下老化行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 75-79.
[14] 郦晓慧,王俭秋,韩恩厚,柯伟. 不同镍基堆焊材料在高温高压水中的应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2011, 31(6): 436-440.
[15] 张志明,王俭秋,韩恩厚,柯伟. 表面状态对690TT合金腐蚀及应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2011, 31(6): 441-445.